TCP并发服务器(多进程与多线程)

简介: TCP并发服务器(多进程与多线程)

1. 多进程并发服务器

我们在上一节写的TCP服务器只能处理单连接,在代码实现时,多进程并发服务器与非并发服务器在创建监听套接字、绑定、监听这几个步骤是一样的,但是在接收连接请求的时候,多进程并发服务器是这样实现的:父进程负责接受连接请求,一旦连接成功,将会创建一个子进程与客户端通信。示意图如下:

(1)什么是并发

  • 单核CPU → 多进程/线程并发 → 时间片轮转
  • 并发 → 某一个时间片/点所能处理的任务数
  • 服务器并发:服务器在某个时间点/片所能处理的连接数所能接收的client连接越多,并发量越大

(2)多进程并发服务器需要注意的几个要点

使用多进程的方式来解决服务器处理多连接的问题,需要注意下面几点:

  • 共享:读时共享、写时复制。有血缘关系的进程间将会共享
  • 文件描述符
  • 内存映射区mmap
  • 父进程扮演什么角色?
  • 等待接受客户端连接accept()
  • 有连接的时候通过fork()创建一个子进程。父进程只负责等待客户端连接,即通过accept()阻塞等待连接请求,一旦有连接请求,马上通过fork()创建一个子进程,子进程通过共享父进程的文件描述符来实现和client通信。
  • 将用于通信的文件描述符关闭。accept()接受连接请求后会返回一个用于通信的文件描述符,而父进程的职责是等待连接并fork()创建用于通信的子进程,所以对于父进程来说,用于通信的文件描述符是没有用处的,关闭该文件描述符来节省开销。我们知道,文件描述符是有上限的,最多1024个(0-1023),如果不关闭的话,每次fork()一个子进程都要浪费一个文件描述符,如果进程多了,可能文件描述符就不够用了。
  • 子进程扮演什么角色?
  • 通信。通过共享的父进程accept()返回的文件描述符来与客户端通信。
  • 将用于监听的文件描述符关闭。同样是为了节省资源,子进程被fork()出来后也会拥有一个用于监听的文件描述符(因为子进程是对父进程的拷贝),但是子进程的作用是与客户端通信,所以用于监听的文件描述符对子进程而言并无用处,关闭以节省资源。
  • 创建的子进程个数有限制吗?
  • 受硬件限制
  • 文件描述符默认上限1024
  • 子进程资源回收
  • wait/waitpid
  • 使用信号回收
  • signal
  • sigaction
  • 捕捉信号SIGCHLD

(3)读时共享写时复制详解

首先看图

如果父子进程都只是读数据,那么他们都通过虚拟地址去访问1号物理地址的内容,如果此时父进程修改了数据a=8,那么父进程会先复制一份数据到2号内存,然后修改2号内存的数据,父进程再读的时候就去2号内存读,而子进程依然去1号内存读。如果子进程也要修改这个全局变量,那么子进程也会拷贝一份数据到内存3,然后修改内存3的数据,子进程访问数据时会访问内存3的数据。(多个子进程就会拷贝多份)

2. 多进程并发服务器代码实现

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <ctype.h>
#include <signal.h>
#include <sys/wait.h>
#include <errno.h>
// 进程回收函数
void recyle(int num)
{
    pid_t pid;
    while( (pid = waitpid(-1, NULL, WNOHANG)) > 0 )
    {
        printf("child died , pid = %d\n", pid);
    }
}
int main(int argc, const char* argv[])
{
    if(argc < 2)
    {
        printf("eg: ./a.out port\n");
        exit(1);
    }
    struct sockaddr_in serv_addr;
    socklen_t serv_len = sizeof(serv_addr);
    int port = atoi(argv[1]);
    // 创建套接字
    int lfd = socket(AF_INET, SOCK_STREAM, 0);
    // 初始化服务器 sockaddr_in 
    memset(&serv_addr, 0, serv_len);
    serv_addr.sin_family = AF_INET;                   // 地址族 
    serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);    // 监听本机所有的IP
    serv_addr.sin_port = htons(port);            // 设置端口 
    // 绑定IP和端口
    bind(lfd, (struct sockaddr*)&serv_addr, serv_len);
    // 设置同时监听的最大个数
    listen(lfd, 36);
    printf("Start accept ......\n");
    // 使用信号回收子进程pcb //这个子进程回收机制会被子进程复制
    struct sigaction act;
    act.sa_handler = recyle;
    act.sa_flags = 0;
    sigemptyset(&act.sa_mask);
    sigaction(SIGCHLD, &act, NULL);
    struct sockaddr_in client_addr;
    socklen_t cli_len = sizeof(client_addr);
    while(1)
    {
        // 父进程接收连接请求
        // accept阻塞的时候被信号中断, 处理信号对应的操作之后(比如子进程终止,收到信号后去回收子进程)
        // 回来之后不阻塞了, 直接返回-1, 这时候 errno==EINTR
        int cfd = accept(lfd, (struct sockaddr*)&client_addr, &cli_len);
        //解决方法就是,在一个循环中判断,如果accept阻塞过程中被信号打断
        //也就是返回值-1且errno == EINTR,那么再一次调用accept
        //这样accept会再次回到阻塞状态,并且返回值不是-1,也就不会进入循环
        //等到再次被信号打断的时候才会再次进入循环
        /*这里的cfd虽然只定义了一个,但是在每个子进程中都会有一个拷贝,并且修改一个子进程的cfd不会影响其它子进程*/
        while(cfd == -1 && errno == EINTR)
        {
            cfd = accept(lfd, (struct sockaddr*)&client_addr, &cli_len);
        }
        printf("connect sucessful\n");
        // 创建子进程
        pid_t pid = fork();
        if(pid == 0)
        {
            close(lfd);
            // child process
            // 通信
            char ip[64];
            while(1)
            {
                // client ip port
                printf("client IP: %s, port: %d\n", 
                       inet_ntop(AF_INET, &client_addr.sin_addr.s_addr, ip, sizeof(ip)),
                       ntohs(client_addr.sin_port));
                char buf[1024];
                int len = read(cfd, buf, sizeof(buf));
                if(len == -1)
                {
                    perror("read error");
                    exit(1);
                }
                else if(len == 0)
                {
                    printf("客户端断开了连接\n");
                    close(cfd);
                    break;
                }
                else
                {
                    printf("recv buf: %s\n", buf);
                    write(cfd, buf, len);
                }
            }
            // 干掉子进程
            return 0;
        }
        else if(pid > 0)
        {
            // parent process
            close(cfd);
        }
    }
    close(lfd);
    return 0;
}

3. 多线程并发服务器

多线程并发服务器示意图如下:

在多进程模型中,fork得到的子进程会复制父进程的文件描述符cfd等信息,每个进程的cfd都是自己的,操作互不影响。但是线程不同,现在只有主线程的cfd,多个线程间的信息是共享的,假如说传递给每个子线程的cfd都是同一个,那么线程1修改该文件描述符指向的内容会影响到线程2的通信,因为它们共享这一个文件描述符。所以这里需要建立一个文件描述符数组,每个子线程对应数组中的一个文件描述符。

另外连接主线程的client是哪一个,也就是说哪个client对应和哪个子线程通信,这也需要把和子线程通信的client的ip和port传给和该client通信的子线程,这样子线程才能知道通信的客户端的ip和port。

于是我们需要创建一个结构体数组,每个子线程对应结构体数组中的一个成员,而结构体数组中的每个成员将作为参数传递给子进程的回调函数。

归根到底就是因为,进程是独立的,线程是共享的。

线程共享下面的资源:

  • 全局数据区
  • 堆区
  • 一块有效内存的地址,比如说把线程1的一块内存的地址传给线程2,那么线程2也可以操作这块内存。

4. 多线程并发服务器代码实现

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <ctype.h>
#include <pthread.h>
// 自定义数据结构 //把线程处理函数所需要的信息封装进来
typedef struct SockInfo
{
    int fd; // 文件描述符
    struct sockaddr_in addr; //ip地址结构体
    pthread_t id; //线程id
}SockInfo;
// 子线程处理函数
void* worker(void* arg)
{
    char ip[64];
    char buf[1024];
    SockInfo* info = (SockInfo*)arg;
    // 通信
    while(1)
    {
        printf("Client IP: %s, port: %d\n",
               inet_ntop(AF_INET, &info->addr.sin_addr.s_addr, ip, sizeof(ip)),
               ntohs(info->addr.sin_port));
        int len = read(info->fd, buf, sizeof(buf));
        if(len == -1)
        {
            perror("read error");
            pthread_exit(NULL); //只退出子线程
        //exit(1); //exit会把主线程也一块退出
        }
        else if(len == 0)
        {
            printf("客户端已经断开了连接\n");
            close(info->fd);
            break;
        }
        else
        {
            printf("recv buf: %s\n", buf);
            write(info->fd, buf, len);
        }
    }
    return NULL;
}
int main(int argc, const char* argv[])
{
    if(argc < 2)
    {
        printf("eg: ./a.out port\n");
        exit(1);
    }
    struct sockaddr_in serv_addr;
    socklen_t serv_len = sizeof(serv_addr);
    int port = atoi(argv[1]);
    // 创建套接字
    int lfd = socket(AF_INET, SOCK_STREAM, 0);
    // 初始化服务器 sockaddr_in 
    memset(&serv_addr, 0, serv_len);
    serv_addr.sin_family = AF_INET;                   // 地址族 
    serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);    // 监听本机所有的IP
    serv_addr.sin_port = htons(port);            // 设置端口 
    // 绑定IP和端口
    bind(lfd, (struct sockaddr*)&serv_addr, serv_len);
    // 设置同时监听的最大个数
    listen(lfd, 36);
    printf("Start accept ......\n");
    int i = 0;
    SockInfo info[256]; //每个线程对应数组的一个元素,最多256个线程
    // 规定 fd == -1  说明这是一个无效文件描述符,也就是说这个文件描述符是空闲的,没被占用
    for(i=0; i<sizeof(info)/sizeof(info[0]); ++i)
    {
        info[i].fd = -1; //所有文件描述符全部初始化为-1
    }
    socklen_t cli_len = sizeof(struct sockaddr_in);
    while(1)
    {
        // 选一个没有被使用的, 最小的数组元素
        //因为有可能我们使用的文件描述符对应数组下标i已经累加到了100,但是前面
        //99个都已经被释放了(断开连接了),我们最好选用一个当前空闲的数组下标最小
        //的文件描述符,以合理利用资源
        for(i=0; i<256; ++i)
        {
            if(info[i].fd == -1)
            {
                break; //这样就能把数组下标最小的fd找出来,并确保i指向它,直接break出去
            }
        }
        if(i == 256) //整个数组都被用完了,直接break出while循环
        {
            break;
        }
        // 主线程 - 等待接受连接请求
        info[i].fd = accept(lfd, (struct sockaddr*)&info[i].addr, &cli_len); //第二个参数是传出参数,
        //传出客户端ip信息(struct sockaddr*)类型
        // 创建子线程 - 通信
        pthread_create(&info[i].id, NULL, worker, &info[i]);
        // 设置线程分离 //这样子线程终止的时候会自动释放,就不需要主线程去释放了
        pthread_detach(info[i].id);
    }
    close(lfd);
    // 只退出主线程 //对子线程无影响,子线程可以继续通信
    pthread_exit(NULL);
    return 0;
}

5. 扩展:Socket API封装

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/socket.h>
void perr_exit(const char *s)
{
        perror(s);
        exit(-1);
}
//也可以在vim下按2K跳转到man文档中的accept函数,因为man文档跳转不区分大小写
int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr)
{
        int n;
again:
        if ((n = accept(fd, sa, salenptr)) < 0) 
    {
        //ECONNABORTED 发生在重传(一定次数)失败后,强制关闭套接字
        //EINTR 进程被信号中断 //如果accept函数在阻塞时被信号打断,处理完信号
           //返回时就不会在阻塞了,而是直接返回-1
        if ((errno == ECONNABORTED) || (errno == EINTR))
        {
        goto again; //如果accept阻塞时被信号打断了,需要在执行一次accept继续阻塞
        }
        else
        {
        perr_exit("accept error");
        }
        }
        return n;
}
int Bind(int fd, const struct sockaddr *sa, socklen_t salen)
{
    int n;
        if ((n = bind(fd, sa, salen)) < 0)
    {
        perr_exit("bind error");
    }
    return n;
}
int Connect(int fd, const struct sockaddr *sa, socklen_t salen)
{
    int n;
    n = connect(fd, sa, salen);
        if (n < 0) 
    {
        perr_exit("connect error");
    }
    return n;
}
int Listen(int fd, int backlog)
{
    int n;
        if ((n = listen(fd, backlog)) < 0)
    {
        perr_exit("listen error");
    }
    return n;
}
int Socket(int family, int type, int protocol)
{
        int n;
        if ((n = socket(family, type, protocol)) < 0)
    {
        perr_exit("socket error");
    }
        return n;
}
ssize_t Read(int fd, void *ptr, size_t nbytes)
{
        ssize_t n;
again:
        if ( (n = read(fd, ptr, nbytes)) == -1) 
    {
        if (errno == EINTR)
                goto again; //如果read被信号中断了,应该让它继续去read等待读数据 (read阻塞时)
        else
                return -1;
        }
        return n;
}
ssize_t Write(int fd, const void *ptr, size_t nbytes)
{
        ssize_t n;
again:
        if ((n = write(fd, ptr, nbytes)) == -1) 
    {
        if (errno == EINTR)
                goto again;
        else
                return -1;
        }
        return n;
}
int Close(int fd)
{
    int n;
        if ((n = close(fd)) == -1)
                perr_exit("close error");
    return n;
}
/*参三: 应该读取的字节数*/     //一直读到n字节数才会返回,否则阻塞等待                     
//socket 4096  readn(cfd, buf, 4096)   nleft = 4096-1500
ssize_t Readn(int fd, void *vptr, size_t n)
{
        size_t  nleft;              //usigned int 剩余未读取的字节数
        ssize_t nread;              //int 实际读到的字节数
        char   *ptr;
        ptr = vptr;
        nleft = n;                  //n 未读取字节数
        while (nleft > 0) 
    {
        if ((nread = read(fd, ptr, nleft)) < 0) 
        {
        if (errno == EINTR)
            {
        nread = 0;
            }
        else
            {
        return -1;
            }
        } 
        else if (nread == 0)
        {
        break;
        }
        nleft -= nread;   //nleft = nleft - nread 
        ptr += nread;
        }
        return n - nleft;
}
ssize_t Writen(int fd, const void *vptr, size_t n)
{
        size_t nleft;
        ssize_t nwritten;
        const char *ptr;
        ptr = vptr;
        nleft = n;
        while (nleft > 0) 
    {
        if ( (nwritten = write(fd, ptr, nleft)) <= 0) 
        {
        if (nwritten < 0 && errno == EINTR)
                nwritten = 0;
        else
                return -1;
        }
        nleft -= nwritten;
        ptr += nwritten;
        }
        return n;
}
static ssize_t my_read(int fd, char *ptr) //静态函数保证了读完第一个100字节才去读下一个100字节,而不是每次调用都读100字节
{
        static int read_cnt; //改变量存在静态数据区,下次调用my_read函数的时候,read_cnt会保留上次的值
        static char *read_ptr;
        static char read_buf[100];
        //因为这里的变量都是static的,所以并非每次调用my_read都会读100字节,而是读完100字节再去读下一个100字节
        if (read_cnt <= 0) { 
again:
        if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0)    //"hello\n"
        {
        if (errno == EINTR)
                goto again;
        return -1;
        } 
        else if (read_cnt == 0)
        return 0;
        read_ptr = read_buf;
        }
        read_cnt--; //在上次调用结束的值基础上--,保证了读完100字节再去读下一个100字节
        *ptr = *read_ptr++;
        return 1;
}
/*readline --- fgets*/    
//传出参数 vptr
ssize_t Readline(int fd, void *vptr, size_t maxlen)
{
        ssize_t n, rc;
        char    c, *ptr;
        ptr = vptr;
        for (n = 1; n < maxlen; n++) 
    {
        if ((rc = my_read(fd, &c)) == 1)    //ptr[] = hello\n
        {
        *ptr++ = c;
        if (c == '\n') //先读100个字节,依次遍历,遇到 '\n' 说明一行读完了
                break;
        } 
        else if (rc == 0) 
        {
        *ptr = 0;
        return n-1;
        } 
        else
        return -1;
        }
        *ptr = 0;
        return n;
}

相关文章
|
16天前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
1月前
|
消息中间件 安全 Linux
线程同步与IPC:单进程多线程环境下的选择与权衡
线程同步与IPC:单进程多线程环境下的选择与权衡
58 0
|
1月前
|
消息中间件 存储 算法
【软件设计师备考 专题 】操作系统的内核(中断控制)、进程、线程概念
【软件设计师备考 专题 】操作系统的内核(中断控制)、进程、线程概念
83 0
|
2天前
|
数据采集 存储 Java
高德地图爬虫实践:Java多线程并发处理策略
高德地图爬虫实践:Java多线程并发处理策略
|
3天前
|
Java 数据库连接 数据处理
Python从入门到精通:3.1.2多线程与多进程编程
Python从入门到精通:3.1.2多线程与多进程编程
|
8天前
|
安全 Java
深入理解 Java 多线程和并发工具类
【4月更文挑战第19天】本文探讨了Java多线程和并发工具类在实现高性能应用程序中的关键作用。通过继承`Thread`或实现`Runnable`创建线程,利用`Executors`管理线程池,以及使用`Semaphore`、`CountDownLatch`和`CyclicBarrier`进行线程同步。保证线程安全、实现线程协作和性能调优(如设置线程池大小、避免不必要同步)是重要环节。理解并恰当运用这些工具能提升程序效率和可靠性。
|
10天前
|
调度 Python
Python多线程、多进程与协程面试题解析
【4月更文挑战第14天】Python并发编程涉及多线程、多进程和协程。面试中,对这些概念的理解和应用是评估候选人的重要标准。本文介绍了它们的基础知识、常见问题和应对策略。多线程在同一进程中并发执行,多进程通过进程间通信实现并发,协程则使用`asyncio`进行轻量级线程控制。面试常遇到的问题包括并发并行混淆、GIL影响多线程性能、进程间通信不当和协程异步IO理解不清。要掌握并发模型,需明确其适用场景,理解GIL、进程间通信和协程调度机制。
28 0
|
10天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
7 0
|
14天前
|
Java API 调度
安卓多线程和并发处理:提高应用效率
【4月更文挑战第13天】本文探讨了安卓应用中多线程和并发处理的优化方法,包括使用Thread、AsyncTask、Loader、IntentService、JobScheduler、WorkManager以及线程池。此外,还介绍了RxJava和Kotlin协程作为异步编程工具。理解并恰当运用这些技术能提升应用效率,避免UI卡顿,确保良好用户体验。随着安卓技术发展,更高级的异步处理工具将助力开发者构建高性能应用。
|
25天前
|
安全 Linux API
Android进程与线程
Android进程与线程
18 0