【数据结构】二叉树的链式实现及遍历

简介: 【数据结构】二叉树的链式实现及遍历

一、二叉树的遍历

后文所有代码中的二叉树结点:

typedef char BTDataType;
//二叉树结点结构体
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}BTNode;

1、前序遍历

前,中,后序遍历都可以采用分治递归的思想解决,将根节点和它的孩子结点分别处理。

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    printf("%c ", root->data);
    BinaryTreePrevOrder(root->left);
    BinaryTreePrevOrder(root->right);
}

此处仅利用递归展开图分析前序遍历,中序和后序也是相同的思想:

2、中序遍历

// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    BinaryTreeInOrder(root->left);
    printf("%c ", root->data);
    BinaryTreeInOrder(root->right);
}

3、后序遍历

// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    BinaryTreePostOrder(root->left);
    BinaryTreePostOrder(root->right);
    printf("%c ", root->data);
}

4、层序遍历

层序遍历需要利用队列来进行,如果二叉树跟结点不为空,则让指向它的一个指针入队,然后将队头结点记录下来,先将它的值打印,然后判断它的左右孩子为非空则入队,然后删掉队头换下一个继续记录打印…直到队列为空则遍历完成。

例如对如图这个二叉树:

层序遍历结果为:12345

先将根节点1入队,打印1

然后将1的左右孩子2和3入队

删掉队头1,front换为2,打印2

然后将2的左孩子4入队

删掉队头2,front换为3,打印3

然后将3的右孩子5入队

… …

接着按这样打印4,5便完成了二叉树的层序遍历

程序代码利用了自己创建的队列,代码如下:

//层序遍历
void LevelOrder(BTNode* root)
{
    //创建队列
    Que q;
    QueueInit(&q);
    //如果根节点不为空,则放进队列
    if (root)
        QueuePush(&q, root);
    while (!QueueEmpty(&q))
    {
        //将队头打印
        BTNode* front = QueueFront(&q);
        printf("%c ", front->data);
        //判断front左右节点不为空则入队
        if (front->left)
            QueuePush(&q, front->left);
        if (front->right)
            QueuePush(&q, front->right);
        QueuePop(&q);
    }
    printf("\n");
    QueueDestroy(&q);
}

二、二叉树结点个数及高度

1、二叉树节点个数

采用分治法递归实现,当根节点为空时返回值为0,不为空则返回左右子树上的节点数加上自身1。

int BinaryTreeSize(BTNode* root)
{
    return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

2、二叉树叶子节点个数

采用分治法递归实现,根节点为空时返回0,当根节点没有孩子结点时说明它是叶子节点,返回1,其他情况时只需左右子树上的叶子节点相加即可。

int BinaryTreeLeafSize(BTNode* root)
{
    if (root == NULL)
    {
        return 0;
    }
    if (root->left == NULL && root->right == NULL)
    {
        return 1;
    }
    return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

3、二叉树第k层节点个数

需要保证k大于0才可,当根节点为空,则返回0,当k等于1时只有一层一个节点,返回1,k>1时第k层节点数就相当于它左右孩子的第k-1层节点数相加。

int BinaryTreeLevelKSize(BTNode* root, int k)
{
    assert(k > 0);
    if (root == NULL)
    {
        return 0;
    }
    if (k == 1)
    {
        return 1;
    }
    return BinaryTreeLevelKSize(root->left, k - 1)
        + BinaryTreeLevelKSize(root->right, k - 1);
}

4、二叉树查找值为x的节点

跟节点为空则找不到返回NULL,当根节点的值为要找的值时返回该节点,不相等则分别判断它的左右孩子节点,直到找到为止。

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
    if (root == NULL)
    {
        return NULL;
    }
    if (root->data == x)
    {
        return root;
    }
    BTNode* ret = BinaryTreeFind(root->left,x);
    if (ret)
    {
        return ret;
    }
    return BinaryTreeFind(root->right, x);
}

三、二叉树创建及销毁

1、通过前序遍历数组创建二叉树

读入用户输入的一串先序遍历字符串,根据此字符串建立一个二叉树(以指针方式存储)。 例如如下的先序遍历字符串: ABC##DE#G##F### 其中“#”表示的是空格,空格字符代表空树。建立起此二叉树以后,再对二叉树进行中序遍历,输出遍历结果。

#include <stdio.h>
#include<stdlib.h>
typedef char BTDataType;
typedef struct BinaryTreeNode {
    BTDataType data;
    struct BinaryTreeNode* left;
    struct BinaryTreeNode* right;
} BTNode;
BTNode* BinaryTreeCreate(BTDataType* a, int* pi) {
    if (a[*pi] == '#') {
        ++*pi;
        return NULL;
    }
    BTNode* root = (BTNode*)malloc(sizeof(BTDataType));
    root->data = a[*pi];
    ++*pi;
    root->left = BinaryTreeCreate(a, pi);
    root->right = BinaryTreeCreate(a, pi);
    return root;
}
//中序遍历
void InOrder(BTNode* root)
{
    if(root==NULL)
    {
        return;
    }
    InOrder(root->left);
    printf("%c ",root->data);
    InOrder(root->right);
}
int main() {
    char a[100];
    scanf("%s",a);
    int pi=0;
    BTNode* root=BinaryTreeCreate(a, &pi);
    InOrder(root);
    return 0;
}

2、二叉树的销毁

void BinaryTreeDestory(BTNode* root)
{
    if (root == NULL)
    {
        return;
    }
    BinaryTreeDestory(root->left);
    BinaryTreeDestory(root->right);
    free(root);
}

3、判断是否为完全二叉树

二叉树层序遍历的基础上修改一下,让空节点也进入队列,遍历时遇到空节点则退出,继续遍历如果结束前还有非空节点则不是完全二叉树。

int BinaryTreeComplete(BTNode* root)
{
    //创建队列
    Que q;
    QueueInit(&q);
    //如果根节点不为空,则放进队列
    if (root)
        QueuePush(&q, root);
    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        if (front == NULL)
        {
            break;
        }
        QueuePush(&q, front->left);
        QueuePush(&q, front->right);
        QueuePop(&q);
    }
    //此时已经遇到空节点,如果再遇到非空节点则不是完全二叉树
    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        if (front)
        {
            QueueDestroy(&q);
            return false;
        }
        QueuePop(&q);
    }
    QueueDestroy(&q);
    return true;
}

四、测试代码

手动构建一个如下图的二叉树,对代码进行测试:

测试结果应该为:

前序:123874569

中序:832715469

后序:837259641

是否为完全二叉树:0

节点数:9

叶子节点数:4

BTNode* BuyNode(BTDataType x)
{
    BTNode* node = (BTNode*)malloc(sizeof(BTNode));
    if (node == NULL)
    {
        perror("malloc fail");
        exit(-1);
    }
    node->data = x;
    node->left = NULL;
    node->right = NULL;
    return node;
}
int main()
{
      // 手动构建
  BTNode* node1 = BuyNode('1');
  BTNode* node2 = BuyNode('2');
  BTNode* node3 = BuyNode('3');
  BTNode* node4 = BuyNode('4');
  BTNode* node5 = BuyNode('5');
  BTNode* node6 = BuyNode('6');
  BTNode* node7 = BuyNode('7');
  BTNode* node8 = BuyNode('8');
  BTNode* node9 = BuyNode('9');
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  node4->left = node5;
  node4->right = node6;
  node2->right = node7;
  node3->left = node8;
  node6->right = node9;
    printf("前序遍历:");
    BinaryTreePrevOrder(node1);
  printf("\n");
    printf("中序遍历:");
    BinaryTreeInOrder(node1);
  printf("\n");
    printf("后序遍历:");
    BinaryTreePostOrder(node1);
  printf("\n");
    printf("层序遍历:");
    LevelOrder(node1);
    printf("\n");
    printf("BinaryTreeComplete:%d\n", BinaryTreeComplete(node1));
    printf("BinaryTreeSize:%d\n", BinaryTreeSize(node1));
    printf("BinaryTreeLeafSize:%d\n", BinaryTreeLeafSize(node1));
    BinaryTreeDestory(node1);
  node1 = NULL;
    return 0;
}

运行结果:

运行结果与预测结果一致。

目录
相关文章
|
24天前
|
算法
【算法与数据结构】二叉树(前中后)序遍历2
【算法与数据结构】二叉树(前中后)序遍历
|
9天前
二叉树和数据结构
二叉树和数据结构
17 0
|
10天前
|
算法 DataX
二叉树(中)+Leetcode每日一题——“数据结构与算法”“剑指Offer55-I. 二叉树的深度”“100.相同的树”“965.单值二叉树”
二叉树(中)+Leetcode每日一题——“数据结构与算法”“剑指Offer55-I. 二叉树的深度”“100.相同的树”“965.单值二叉树”
|
20天前
|
算法 索引
【算法与数据结构】深入二叉树实现超详解(全源码优化)
【算法与数据结构】深入二叉树实现超详解(全源码优化)
|
20天前
|
存储 算法
【算法与数据结构】深入解析二叉树(二)之堆结构实现
【算法与数据结构】深入解析二叉树(二)之堆结构实现
|
28天前
|
存储 C语言
【数据结构】线性表的链式存储结构
【数据结构】线性表的链式存储结构
18 0
|
1月前
|
存储 算法 程序员
【数据结构】【版本2.0】【树形深渊】——二叉树入侵
【数据结构】【版本2.0】【树形深渊】——二叉树入侵
|
1月前
|
算法 C++ 开发者
【C/C++ 数据结构 】二叉树基本性质:具有n个结点的完全二叉树的深度为[log2n]+1或者[log2(n+1)]...
【C/C++ 数据结构 】二叉树基本性质:具有n个结点的完全二叉树的深度为[log2n]+1或者[log2(n+1)]...
12 0
|
1月前
|
存储 算法 C语言
【C/C++ 数据结构 树】探索C/C++中的二叉树:从理论到实践
【C/C++ 数据结构 树】探索C/C++中的二叉树:从理论到实践
60 0
|
1月前
|
存储 算法 Python
数据结构与算法——二叉树介绍(附代码)
数据结构与算法——二叉树介绍(附代码)
22 3