04、添加修改
数据的修改、增加和删除在数据整理过程中时常发生。修改的情况一般是修改错误、格式转换,数据的类型修改等。
1、修改数值
df.iloc[0,0] # 查询值 # 'Liver' df.iloc[0,0] = 'Lily' # 修改值 df.iloc[0,0] # 查看结果 # 'Lily' # 将小于60分的成绩修改为60 df[df.Q1 < 60] = 60 # 查看 df.Q1 # 生成一个长度为100的列表 v = [1, 3, 5, 7, 9] * 20
2、替换数据
s.replace(0, 5) # 将列数据中的0换为5 df.replace(0, 5) # 将数据中的所有0换为5 df.replace([0, 1, 2, 3], 4) # 将0~3全换成4 df.replace([0, 1, 2, 3], [4, 3, 2, 1]) # 对应修改 s.replace([1, 2], method='bfill') # 向下填充 df.replace({0: 10, 1: 100}) # 字典对应修改 df.replace({'Q1': 0, 'Q2': 5}, 100) # 将指定字段的指定值修改为100 df.replace({'Q1': {0: 100, 4: 400}}) # 将指定列里的指定值替换为另一个指定的值
3、填充空值
df.fillna(0) # 将空值全修改为0 # {'backfill', 'bfill', 'pad', 'ffill',None}, 默认为None df.fillna(method='ffill') # 将空值都修改为其前一个值 values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} df.fillna(value=values) # 为各列填充不同的值 df.fillna(value=values, limit=1) # 只替换第一个
4、修改索引名
df.rename(columns={'team':'class'})
常用方法如下:
df.rename(columns={"Q1":"a", "Q2": "b"}) # 对表头进行修改 df.rename(index={0: "x", 1:"y", 2: "z"}) # 对索引进行修改 df.rename(index=str) # 对类型进行修改 df.rename(str.lower, axis='columns') # 传索引类型 df.rename({1: 2, 2: 4}, axis='index') # 对索引名进行修改 s.rename_axis("animal") df.rename_axis("animal") # 默认是列索引 df.rename_axis("limbs",axis="columns") # 指定行索引 # 索引为多层索引时可以将type修改为class df.rename_axis(index={'type': 'class'}) # 可以用set_axis进行设置修改 s.set_axis(['a', 'b', 'c'], axis=0) df.set_axis(['I', 'II'], axis='columns') df.set_axis(['i', 'ii'], axis='columns',inplace=True)
5、增加列
df['foo'] = 100 # 增加一列foo,所有值都是100 df['foo'] = df.Q1 + df.Q2 # 新列为两列相加 df['foo'] = df['Q1'] + df['Q2'] # 同上 # 把所有为数字的值加起来 df['total'] =df.select_dtypes(include=['int']).sum(1)df['total'] = df.loc[:,'Q1':'Q4'].apply(lambda x: sum(x), axis='columns') df.loc[:, 'Q10'] = '我是新来的' # 也可以 # 增加一列并赋值,不满足条件的为NaN df.loc[df.num >= 60, '成绩'] = '合格' df.loc[df.num < 60, '成绩'] = '不合格'
6、插入列df.insert()
# 在第三列的位置上插入新列total列,值为每行的总成绩 df.insert(2, 'total', df.sum(1))
7、指定列df.assign()
# 增加total列 df.assign(total=df.sum(1)) # 增加两列 df.assign(total=df.sum(1), Q=100) df.assign(total=df.sum(1)).assign(Q=100) 其他使用示例: df.assign(Q5=[100]*100) # 新增加一列Q5 df = df.assign(Q5=[100]*100) # 赋值生效 df.assign(Q6=df.Q2/df.Q1) # 计算并增加Q6 df.assign(Q7=lambda d: d.Q1 * 9 / 5 + 32) # 使用lambda# 添加一列,值为表达式结果:True或False df.assign(tag=df.Q1>df.Q2) # 比较计算,True为1,False为0 df.assign(tag=(df.Q1>df.Q2).astype(int)) # 映射文案 df.assign(tag=(df.Q1>60).map({True:'及格',False:'不及格'})) # 增加多个 df.assign(Q8=lambda d: d.Q1*5, Q9=lambda d: d.Q8+1) # Q8没有生效,不能直接用df.Q8
8、执行表达式df.eval()
# 传入求总分表达式 df.eval('total = Q1+Q3+Q3+Q4')
其他方法:
df['C1'] = df.eval('Q2 + Q3') df.eval('C2 = Q2 + Q3') # 计算 a = df.Q1.mean()df.eval("C3 =`Q3`+@a") # 使用变量 df.eval("C3 = Q2 > (`Q3`+@a)") #加一个布尔值 df.eval('C4 = name + team', inplace=True) # 立即生效
9、增加行
# 新增索引为100的数据 df.loc[100] = ['tom', 'A', 88, 88, 88, 88]
其他方法:
df.loc[101]={'Q1':88,'Q2':99} # 指定列,无数据列值为NaN df.loc[df.shape[0]+1] = {'Q1':88,'Q2':99} # 自动增加索引 df.loc[len(df)+1] = {'Q1':88,'Q2':99} # 批量操作,可以使用迭代 rows = [[1,2],[3,4],[5,6]] for row in rows: df.loc[len(df)] = row
10、追加合并
df = pd.DataFrame([[1, 2], [3, 4]],columns=list('AB')) df2 = pd.DataFrame([[5, 6], [7, 8]],columns=list('AB')) df.append(df2) d
11、删除
# 删除索引为3的数据 s.pop(3) # 93s s
12、删除空值
df.dropna() # 一行中有一个缺失值就删除 df.dropna(axis='columns') # 只保留全有值的列 df.dropna(how='all') # 行或列全没值才删除 df.dropna(thresh=2) # 至少有两个空值时才删除 df.dropna(inplace=True) # 删除并使替换生效
05、高级过滤
介绍几个非常好用的复杂数据处理的数据过滤输出方法。
1、df.where()
# 数值大于70 df.where(df > 70)
2、np.where()
# 小于60分为不及格 np.where(df>=60, '合格', '不合格')
3、df.mask()
# 符合条件的为NaN df.mask(s > 80)
4、df.lookup()
# 行列相同数量,返回一个array df.lookup([1,3,4], ['Q1','Q2','Q3']) # array([36, 96, 61]) df.lookup([1], ['Q1']) # array([36])
06、数据迭代
1、迭代Series
# 迭代指定的列 for i in df.name: print(i) # 迭代索引和指定的两列 for i,n,q in zip(df.index, df.name,df.Q1): print(i, n, q)
2、df.iterrows()
# 迭代,使用name、Q1数据 for index, row in df.iterrows(): print(index, row['name'], row.Q1)
3、df.itertuples()
for row in df.itertuples(): print(row)
4、df.items()
# Series取前三个 for label, ser in df.items(): print(label) print(ser[:3], end='\n\n')
5、按列迭代
# 直接对DataFrame迭代 for column in df: print(column)
07、函数应用
1、pipe()
应用在整个DataFrame或Series上。
# 对df多重应用多个函数 f(g(h(df), arg1=a), arg2=b, arg3=c) # 用pipe可以把它们连接起来 (df.pipe(h) .pipe(g, arg1=a) .pipe(f, arg2=b, arg3=c) )
2、apply()
应用在DataFrame的行或列中,默认为列。
# 将name全部变为小写 df.name.apply(lambda x: x.lower())
3、applymap()
应用在DataFrame的每个元素中。
# 计算数据的长度 def mylen(x): return len(str(x)) df.applymap(lambda x:mylen(x)) # 应用函数 df.applymap(mylen) # 效果同上
4、map()
应用在Series或DataFrame的一列的每个元素中。
df.team.map({'A':'一班', 'B':'二班','C':'三班', 'D':'四班',})# 枚举替换 df['name'].map(f)
5、agg()
# 每列的最大值 df.agg('max') # 将所有列聚合产生sum和min两行 df.agg(['sum', 'min']) # 序列多个聚合 df.agg({'Q1' : ['sum', 'min'], 'Q2' : ['min','max']}) # 分组后聚合 df.groupby('team').agg('max') df.Q1.agg(['sum', 'mean'])
6、transform()
df.transform(lambda x: x*2) # 应用匿名函数 df.transform([np.sqrt, np.exp]) # 调用多个函数 df.t
7、copy()
s = pd.Series([1, 2], index=["a","b"]) s_1 = s s_copy = s.copy() s_1 is s # True s_copy is s # False