< Python全景系列-5 > 解锁Python并发编程:多线程和多进程的神秘面纱揭晓

简介: < Python全景系列-5 > 解锁Python并发编程:多线程和多进程的神秘面纱揭晓

欢迎来到我们的系列博客《Python全景系列》!在这个系列中,我们将带领你从Python的基础知识开始,一步步深入到高级话题,帮助你掌握这门强大而灵活的编程语法。无论你是编程新手,还是有一定基础的开发者,这个系列都将提供你需要的知识和技能。

 

这是本系列的第五篇,我们将深入探讨Python中的并发编程,特别关注多线程和多进程的应用。我们将先从基本概念开始,然后通过详细举例探讨每一种机制,最后分享一些实战经验以及一种优雅的编程技巧。

 

第一部分:多线程介绍

线程是操作系统中最小的执行单元。在单个程序或进程内,可以并发运行多个线程,共享进程的资源,如内存和文件描述符。

1.1 Python中的多线程

Python支持多线程编程,并提供了`threading`模块作为支持。这个模块提供了`Thread`类,我们可以通过创建其实例并向其传递函数来创建新线程。当然,你也可以通过继承`Thread`类并重写`run()`方法来创建自定义线程。下面是一个多线程编程的例子:

import threading
def print_numbers():
    for i in range(10):
        print(i)
def print_letters():
    for letter in 'abcdefghij':
        print(letter)
# 创建线程
t1 = threading.Thread(target=print_numbers)
t2 = threading.Thread(target=print_letters)
# 启动线程
t1.start()
t2.start()
# 等待线程结束
t1.join()
t2.join()

 

在上面的例子中,我们定义了两个函数:一个打印数字,另一个打印字母。然后我们创建了两个线程,每个线程的目标是执行这些函数。`start()`方法用于启动线程,而`join()`方法用于等待线程完成。

 

1.2 多线程的实际应用

尽管Python的多线程因为全局解释器锁(GIL)的存在,并不能实现真正的并行,但是它们在I/O密集型任务中仍然很有用。GIL是CPython解释器的一个互斥锁,保证在任何时刻只有一个线程在执行。这意味着在CPU密集型任务中,多线程可能不是最佳选择,因为它们无法充分利用多核CPU。

然而,在I/O密集型任务中,多线程能够提高程序性能。例如,如果一个程序需要从多个源下载文件,那么使用多线程可以使得当一个线程等待网络响应时,其他线程可以继续下载其他文件。这样,程序可以在同一时间从多个源下载文件,大大提高了效率。

 

第二部分:多进程介绍

进程是操作系统中独立的执行实体,每个进程都有自己的内存空间、文件描述符等资源。与线程不同,进程之间的资源

并不共享,每个进程都有自己独立的资源。

 

2.1 Python中的多进程

 

Python通过`multiprocessing`模块提供了多进程支持。类似于多线程,我们可以通过创建`Process`类的实例并向其传递函数来创建新进程。我们也可以通过继承`Process`类并重写`run()`方法来创建自定义进程。

以下是一个简单的多进程编程的例子:

import multiprocessing
def print_numbers():
    for i in range(10):
        print(i)
def print_letters():
    for letter in 'abcdefghij':
        print(letter)
# 创建进程
p1 = multiprocessing.Process(target=print_numbers)
p2 = multiprocessing.Process(target=print_letters)
# 启动进程
p1.start()
p2.start()
# 等待进程结束
p1.join()
p2.join()

这个例子和前面的多线程例子类似,不同的是这里我们创建的是两个进程,而不是线程。

 

2.2 多进程的实际应用

多进程可以实现真正的并行,使得Python程序可以利用多核CPU。因此,对于CPU密集型任务,多进程通常比多线程更有优势。另一方面,多进程的开销比多线程大,而且进程间的通信和同步也比线程间的更为复杂。因此,对于I/O密集型任务,或者需要频繁通信的任务,多线程可能会是更好的选择。


第三部分:优化并发编程的技巧

在Python中,`concurrent.futures`模块为多线程和多进程编程提供了高级接口,可以让我们更加简洁地编写代码。

这个模块提供了`ThreadPoolExecutor`和`ProcessPoolExecutor`两个类,它们分别用于创建线程池和进程池。这两个类都实现了相同的接口,你可以使用`submit()`方法提交任务,然后使用`as_completed()`函数等待任务完成。

下面是一个使用`concurrent.futures`模块的示例:

 

import concurrent.futures
def print_numbers():
    for i in range(10):
        print(i)
def print_letters():
    for letter in 'abcdefghij':
        print(letter)
# 使用线程池
with concurrent.futures.ThreadPoolExecutor() as executor:
    future1 = executor.submit(print_numbers)
    future2 = executor.submit(print_letters)
    for future in concurrent.futures.as_completed([future1, future2]):
        pass
# 使用进程池
with concurrent.futures.ProcessPoolExecutor() as executor:
    future1 = executor.submit(print_numbers)
    future2 = executor.submit(print_letters)
    for future in concurrent.futures.as_completed([future1, future2]):
        pass

在上面的例子中,我们创建了线程池和进程池,然后向它们提交任务。可以看到,使用`concurrent.futures`模块,我们的代码更加简洁,易读性和可维护性也有所提高。

总结

Python的多线程和多进程都是非常强大的工具,可以帮助我们编写出更高效的程序。然而,它们也各有优缺点,需要我们根据具体的任务和需求来选择。同时,Python还提供了`concurrent.futures`模块,可以使我们的并发编程变得更加简单和高效。

我们希望本文能帮助你更好地理解和使用Python的多线程和多进程。如果你有任何疑问或者建议,欢迎在评论区留言。

目录
打赏
0
0
0
0
24
分享
相关文章
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
81 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
2天前
|
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
32 20
面试直击:并发编程三要素+线程安全全攻略!
并发编程三要素为原子性、可见性和有序性,确保多线程操作的一致性和安全性。Java 中通过 `synchronized`、`Lock`、`volatile`、原子类和线程安全集合等机制保障线程安全。掌握这些概念和工具,能有效解决并发问题,编写高效稳定的多线程程序。
66 11
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
346 6
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
Java 多线程并发编程
Java多线程并发编程是指在Java程序中使用多个线程同时执行,以提高程序的运行效率和响应速度。通过合理管理和调度线程,可以充分利用多核处理器资源,实现高效的任务处理。本内容将介绍Java多线程的基础概念、实现方式及常见问题解决方法。
192 0
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
46 0
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
117 0
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
220 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等