< Python全景系列-5 > 解锁Python并发编程:多线程和多进程的神秘面纱揭晓

简介: < Python全景系列-5 > 解锁Python并发编程:多线程和多进程的神秘面纱揭晓

欢迎来到我们的系列博客《Python全景系列》!在这个系列中,我们将带领你从Python的基础知识开始,一步步深入到高级话题,帮助你掌握这门强大而灵活的编程语法。无论你是编程新手,还是有一定基础的开发者,这个系列都将提供你需要的知识和技能。

 

这是本系列的第五篇,我们将深入探讨Python中的并发编程,特别关注多线程和多进程的应用。我们将先从基本概念开始,然后通过详细举例探讨每一种机制,最后分享一些实战经验以及一种优雅的编程技巧。

 

第一部分:多线程介绍

线程是操作系统中最小的执行单元。在单个程序或进程内,可以并发运行多个线程,共享进程的资源,如内存和文件描述符。

1.1 Python中的多线程

Python支持多线程编程,并提供了`threading`模块作为支持。这个模块提供了`Thread`类,我们可以通过创建其实例并向其传递函数来创建新线程。当然,你也可以通过继承`Thread`类并重写`run()`方法来创建自定义线程。下面是一个多线程编程的例子:

import threading
def print_numbers():
    for i in range(10):
        print(i)
def print_letters():
    for letter in 'abcdefghij':
        print(letter)
# 创建线程
t1 = threading.Thread(target=print_numbers)
t2 = threading.Thread(target=print_letters)
# 启动线程
t1.start()
t2.start()
# 等待线程结束
t1.join()
t2.join()

 

在上面的例子中,我们定义了两个函数:一个打印数字,另一个打印字母。然后我们创建了两个线程,每个线程的目标是执行这些函数。`start()`方法用于启动线程,而`join()`方法用于等待线程完成。

 

1.2 多线程的实际应用

尽管Python的多线程因为全局解释器锁(GIL)的存在,并不能实现真正的并行,但是它们在I/O密集型任务中仍然很有用。GIL是CPython解释器的一个互斥锁,保证在任何时刻只有一个线程在执行。这意味着在CPU密集型任务中,多线程可能不是最佳选择,因为它们无法充分利用多核CPU。

然而,在I/O密集型任务中,多线程能够提高程序性能。例如,如果一个程序需要从多个源下载文件,那么使用多线程可以使得当一个线程等待网络响应时,其他线程可以继续下载其他文件。这样,程序可以在同一时间从多个源下载文件,大大提高了效率。

 

第二部分:多进程介绍

进程是操作系统中独立的执行实体,每个进程都有自己的内存空间、文件描述符等资源。与线程不同,进程之间的资源

并不共享,每个进程都有自己独立的资源。

 

2.1 Python中的多进程

 

Python通过`multiprocessing`模块提供了多进程支持。类似于多线程,我们可以通过创建`Process`类的实例并向其传递函数来创建新进程。我们也可以通过继承`Process`类并重写`run()`方法来创建自定义进程。

以下是一个简单的多进程编程的例子:

import multiprocessing
def print_numbers():
    for i in range(10):
        print(i)
def print_letters():
    for letter in 'abcdefghij':
        print(letter)
# 创建进程
p1 = multiprocessing.Process(target=print_numbers)
p2 = multiprocessing.Process(target=print_letters)
# 启动进程
p1.start()
p2.start()
# 等待进程结束
p1.join()
p2.join()

这个例子和前面的多线程例子类似,不同的是这里我们创建的是两个进程,而不是线程。

 

2.2 多进程的实际应用

多进程可以实现真正的并行,使得Python程序可以利用多核CPU。因此,对于CPU密集型任务,多进程通常比多线程更有优势。另一方面,多进程的开销比多线程大,而且进程间的通信和同步也比线程间的更为复杂。因此,对于I/O密集型任务,或者需要频繁通信的任务,多线程可能会是更好的选择。


第三部分:优化并发编程的技巧

在Python中,`concurrent.futures`模块为多线程和多进程编程提供了高级接口,可以让我们更加简洁地编写代码。

这个模块提供了`ThreadPoolExecutor`和`ProcessPoolExecutor`两个类,它们分别用于创建线程池和进程池。这两个类都实现了相同的接口,你可以使用`submit()`方法提交任务,然后使用`as_completed()`函数等待任务完成。

下面是一个使用`concurrent.futures`模块的示例:

 

import concurrent.futures
def print_numbers():
    for i in range(10):
        print(i)
def print_letters():
    for letter in 'abcdefghij':
        print(letter)
# 使用线程池
with concurrent.futures.ThreadPoolExecutor() as executor:
    future1 = executor.submit(print_numbers)
    future2 = executor.submit(print_letters)
    for future in concurrent.futures.as_completed([future1, future2]):
        pass
# 使用进程池
with concurrent.futures.ProcessPoolExecutor() as executor:
    future1 = executor.submit(print_numbers)
    future2 = executor.submit(print_letters)
    for future in concurrent.futures.as_completed([future1, future2]):
        pass

在上面的例子中,我们创建了线程池和进程池,然后向它们提交任务。可以看到,使用`concurrent.futures`模块,我们的代码更加简洁,易读性和可维护性也有所提高。

总结

Python的多线程和多进程都是非常强大的工具,可以帮助我们编写出更高效的程序。然而,它们也各有优缺点,需要我们根据具体的任务和需求来选择。同时,Python还提供了`concurrent.futures`模块,可以使我们的并发编程变得更加简单和高效。

我们希望本文能帮助你更好地理解和使用Python的多线程和多进程。如果你有任何疑问或者建议,欢迎在评论区留言。

目录
相关文章
|
15天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
10天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
28 4
|
10天前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
32 1
|
17天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
24天前
|
Java Python
python知识点100篇系列(16)-python中如何获取线程的返回值
【10月更文挑战第3天】本文介绍了两种在Python中实现多线程并获取返回值的方法。第一种是通过自定义线程类继承`Thread`类,重写`run`和`join`方法来实现;第二种则是利用`concurrent.futures`库,通过`ThreadPoolExecutor`管理线程池,简化了线程管理和结果获取的过程,推荐使用。示例代码展示了这两种方法的具体实现方式。
python知识点100篇系列(16)-python中如何获取线程的返回值
|
26天前
|
网络协议 安全 Java
难懂,误点!将多线程技术应用于Python的异步事件循环
难懂,误点!将多线程技术应用于Python的异步事件循环
51 0
|
10天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
3天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
12 5
|
3天前
|
人工智能 数据挖掘 开发者
探索Python编程:从基础到进阶
【10月更文挑战第32天】本文旨在通过浅显易懂的语言,带领读者从零开始学习Python编程。我们将一起探索Python的基础语法,了解如何编写简单的程序,并逐步深入到更复杂的编程概念。文章将通过实际的代码示例,帮助读者加深理解,并在结尾处提供练习题以巩固所学知识。无论你是编程新手还是希望提升编程技能的开发者,这篇文章都将为你的学习之旅提供宝贵的指导和启发。
|
8天前
|
数据处理 Python
从零到英雄:Python编程的奇幻旅程###
想象你正站在数字世界的门槛上,手中握着一把名为“Python”的魔法钥匙。别小看这把钥匙,它能开启无限可能的大门,引领你穿梭于现实与虚拟之间,创造属于自己的奇迹。本文将带你踏上一场从零基础到编程英雄的奇妙之旅,通过生动有趣的比喻和实际案例,让你领略Python编程的魅力,激发内心深处对技术的渴望与热爱。 ###

热门文章

最新文章