机器学习算法之线性回归的损失和优化

简介: 机器学习算法之线性回归的损失和优化

我们仍然选择房子的例子,假设真实的数据之间存在这样的关系:


真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率

那么现在,我们随意指定一个关系(猜测):


随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 + 0.34×城镇犯罪率

思考一下,这样的话,会发生什么?真实结果与我们预测的结果之间是不是存在一定的误差呢?类似下图所示:

既然存在这个误差,那我们就需要将这个误差给衡量出来。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

1.损失函数

总损失定义为:

yi 为第 i 个训练样本的真实值h(xi) 为第 i 个训练样本特征值组合预测函数又称最小二乘法

如何去减少这个损失,使预测更加准确呢?我们一直说机器学习有自动学习的功能,在线性回归中更能体现。此处可以通过一些优化方法去优化(其实运用了是数学当中的求导功能)回归的总损失!!!

2.优化算法

如何去求模型当中的 W,使得损失最小?(目的是找到最小损失对应的 W 值)

下面即线性回归经常使用的两种优化算法:

2.1 正规方程

2.1.1 什么是正规方程

理解:X 为特征值矩阵,y 为目标值矩阵。根据公式直接求出最好的结果。

缺点:当特征过多且十分复杂时,求解速度太慢并且很难得到甚至得不到正确结果

2.1.2 正规方程求解举例

以下图片展示数据为例:

即:

运用正规方程方法求解参数:

2.1.3 正规方程的推导

把该损失函数转换成矩阵写法:

其中 y 是真实值矩阵,X 是特征值矩阵,w 是权重矩阵。

对其求解关于 w 的最小值,起止 y , X 均已知二次函数,直接求导,导数为零的位置,即为最小值。

求导:

注:式(1) 到 式(2) 推导过程中, X 是一个 mn 列的矩阵,并不能保证其有逆矩阵,但是右乘 XT 可把其变成一个方阵,保证其有逆矩阵。

式(5) 到 式(6) 推导过程中,和上面类似。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

2.2 梯度下降(Gradient Descent)

2.2.1 什么是梯度下降

梯度下降法的基本思想可以类比为一个下山的过程。

假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上浓雾密布,可视度很低,下山的路径根本无法确定。他必须利用自己周围的信息去找到下山路径(根据身边信息不断摸索前进)。此时,就可以利用梯度下降算法来下山了。换成直白的话语,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着 山高度下降的地方 走,(同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走)。然后每走一段距离,都反复采用同一种方法,最后就能成功的抵达山谷。

英文中 e.g. 的全称是 exempli gratia;i.e. 的全称是 id est 。

英文中 e.g. 的意思是 例如比如i.e. 的意思是 那就是说换句话说

梯度下降的基本过程同下山的场景类似。首先,有一个可微分的函数。此函数就代表着一座山。我们的目标就是找到这个函数的最小值,也就是山底。

根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数变化最快的方向。重复利用此方法,反复求取梯度,最后就能到达局部的最小值,这就类似于下山的过程。而求取梯度就确定了最陡峭的方向,也就是场景中测量方向的手段。

百度百科:梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。梯度向量的方向即为函数值增长最快的方向。

如果梯度的概念你还不是很清楚,请看下方解释更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

2.2.2 梯度的概念

梯度是微积分中一个很重要的概念。在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率。在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向。

这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向一直走,就能走到局部的最低点!

2.2.3 梯度下降举例

1) 单变量函数的梯度下降

假设有一个单变量的函数:J(θ) = θ的平方

函数的微分:J(θ)的微分 = 2θ

初始化,起点为:θ0 = 1

学习率:α = 0.4

我们开始进行梯度下降的迭代计算过程:

如下示意图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底

2) 多变量函数的梯度下降

我们假设有一个目标函数 :

现在要利用梯度下降法计算这个函数的最小值。通过观察就能发现最小值其实就是 (0,0) 点。但是不能直接看,需要论证。接下来,我们会从梯度下降算法开始,一步步计算到这个最小值!

我们假设初始的起点为:θ0 = (1, 3)

初始的学习率为:α = 0.1

函数的梯度为:▽J(θ) =< 2θ1 ,2θ2>

进行多次迭代:

我们发现,已经基本靠近函数的最小值点

2.2.4 梯度下降Gradient Descent)公式

1) α 是什么含义?

α 在梯度下降算法中被称作 学习率 或者 步长,意味着我们可以通过 α 来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈。其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以 α 的选择在梯度下降法中往往是很重要的!α 不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!


2) 为什么梯度要乘以一个负号

梯度前加一个负号,就意味着朝着梯度相反的方向前进。在前文提到,梯度的方向实际就是函数在此点上升最快的方向。而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

通过两个图更好理解梯度下降的过程:

单变量的梯度下降:

多变量的梯度下降:

正因为有了梯度下降这样一个优化算法,回归才具有「自动学习」的能力

2.2.5 优化动态图演示

3.总结

1) 线性回归的损失函数 - 均方误差2) 线性回归的优化方法:正规方程、梯度下降3) 梯度下降和正规方程的对比:

梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用

需要计算方程,时间复杂度高

O(n的立方)

4) 选择上小规模数据:LinearRegression(不能解决拟合问题) 岭回归大规模数据:SGDRegressor


相关文章
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
7天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
24 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
13天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
24天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
16天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
20天前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
239 14
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)