模型类序列化器ModelSerializer

简介: 模型类序列化器ModelSerializer

模型类序列化器ModelSerializer

如果我们想要使用序列化器对应的是Django的模型类,DRF为我们提供了ModelSerializer模型类序列化器来帮助我们快速创建一个Serializer类。

ModelSerializer与常规的Serializer相同,但提供了:

  • 基于模型类自动生成一系列字段
  • 包含默认的create()和update()的实现

1. 定义

比如我们创建一个BookInfoSerializer

class BookInfoSerializer(serializers.ModelSerializer):
    """图书数据序列化器"""
    class Meta:
        model = BookInfo
        fields = '__all__'
  • model 指明参照哪个模型类
  • fields 指明为模型类的哪些字段生成

我们可以在python manage.py shell中查看自动生成的BookInfoSerializer的具体实现

>>> from booktest.serializers import BookInfoSerializer
>>> serializer = BookInfoSerializer()
>>> serializer
BookInfoSerializer():
    id = IntegerField(label='ID', read_only=True)
    btitle = CharField(label='名称', max_length=20)
    bpub_date = DateField(allow_null=True, label='发布日期', required=False)
    bread = IntegerField(label='阅读量', max_value=2147483647, min_value=-2147483648, required=False)
    bcomment = IntegerField(label='评论量', max_value=2147483647, min_value=-2147483648, required=False)
    image = ImageField(allow_null=True, label='图片', max_length=100, required=False)

2. 指定字段

1) 使用fields来明确字段,__all__表名包含所有字段,也可以写明具体哪些字段,如

class BookInfoSerializer(serializers.ModelSerializer):
    """图书数据序列化器"""
    class Meta:
        model = BookInfo
        fields = ('id', 'btitle', 'bpub_date')

2) 使用exclude可以明确排除掉哪些字段

class BookInfoSerializer(serializers.ModelSerializer):
    """图书数据序列化器"""
    class Meta:
        model = BookInfo
        exclude = ('image',)

3) 显示指明字段,如:

class HeroInfoSerializer(serializers.ModelSerializer):
    hbook = BookInfoSerializer()
    class Meta:
        model = HeroInfo
        fields = ('id', 'hname', 'hgender', 'hcomment', 'hbook')

4) 指明只读字段

可以通过read_only_fields指明只读字段,即仅用于序列化输出的字段

class BookInfoSerializer(serializers.ModelSerializer):
    """图书数据序列化器"""
    class Meta:
        model = BookInfo
        fields = ('id', 'btitle', 'bpub_date', 'bread', 'bcomment')
        read_only_fields = ('id', 'bread', 'bcomment')

3. 添加额外参数

我们可以使用extra_kwargs参数为ModelSerializer添加或修改原有的选项参数

class BookInfoSerializer(serializers.ModelSerializer):
    """图书数据序列化器"""
    class Meta:
        model = BookInfo
        fields = ('id', 'btitle', 'bpub_date', 'bread', 'bcomment')
        extra_kwargs = {
            'bread': {'min_value': 0, 'required': True},            'bcomment': {'min_value': 0, 'required': True},
        }
# BookInfoSerializer():
#    id = IntegerField(label='ID', read_only=True)
#    btitle = CharField(label='名称', max_length=20)
#    bpub_date = DateField(allow_null=True, label='发布日期', required=False)
#    bread = IntegerField(label='阅读量', max_value=2147483647, min_value=0, required=True)
#    bcomment = IntegerField(label='评论量', max_value=2147483647,
相关文章
|
4月前
|
存储 Java
序列化流 ObjectInputStream 和 ObjectOutputStream 的基本使用【 File类+IO流知识回顾④】
这篇文章介绍了Java中ObjectInputStream和ObjectOutputStream类的基本使用,这两个类用于实现对象的序列化和反序列化。文章解释了序列化的概念、如何通过实现Serializable接口来实现序列化,以及如何使用transient关键字标记不需要序列化的属性。接着,通过示例代码演示了如何使用ObjectOutputStream进行对象的序列化和ObjectInputStream进行反序列化。
序列化流 ObjectInputStream 和 ObjectOutputStream 的基本使用【 File类+IO流知识回顾④】
|
4月前
|
JSON 安全 编译器
扩展类实例的序列化和反序列化
扩展类实例的序列化和反序列化
49 1
|
5月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
211 4
|
7月前
|
JSON API 数据格式
Django REST framework序列化器详解:普通序列化器与模型序列化器的选择与运用
Django REST framework序列化器详解:普通序列化器与模型序列化器的选择与运用
|
8月前
|
分布式计算 Java 大数据
IO流【Java对象的序列化和反序列化、File类在IO中的作用、装饰器模式构建IO流体系、Apache commons-io工具包的使用】(四)-全面详解(学习总结---从入门到深化)
IO流【Java对象的序列化和反序列化、File类在IO中的作用、装饰器模式构建IO流体系、Apache commons-io工具包的使用】(四)-全面详解(学习总结---从入门到深化)
108 0
|
7月前
|
存储 分布式计算 Hadoop
MapReduce编程模型——自定义序列化类实现多指标统计
MapReduce编程模型——自定义序列化类实现多指标统计
57 0
|
8月前
|
缓存 Java 数据库
为什么Bean类要序列化?
为什么Bean类要序列化?
51 0
|
5月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
2月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
2月前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第22天】在Java的世界里,对象序列化和反序列化是数据持久化和网络传输的关键技术。本文将带你了解如何在Java中实现对象的序列化与反序列化,并探讨其背后的原理。通过实际代码示例,我们将一步步展示如何将复杂数据结构转换为字节流,以及如何将这些字节流还原为Java对象。文章还将讨论在使用序列化时应注意的安全性问题,以确保你的应用程序既高效又安全。