大数据存储方案

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据存储方案

1 结构布局

目前大数据存储有两种方案可供选择:行存储和列存储。业界对两种存储方案有很多争持,集中焦点是:谁能够更有效地处理海量数据,且兼顾安全、可靠、完整性。从目前发展情况看,关系数据库已经不适应这种巨大的存储量和计算要求,基本是淘汰出局。在已知的几种大数据处理软件中,Hadoop的HBase采用列存储,MongoDB是文档型的行存储,Lexst是二进制型的行存储。在这里,我不讨论这些软件的技术和优缺点,只围绕机械磁盘的物理特质,分析行存储和列存储的存储特点,以及由此产生的一些问题和解决办法。

1.1 行存储数据排列

一般的MySQL,oracle结构化数据存储

1.2 列存储数据排列

在列存储方式下,存储空间中的下一个对象就从同一条记录的下一个属性转变为下一条记录的同一属性。虽然这种旋转了90。的存储方式并没有减少数据量,但会带来以下好处:


(1)大数据应用往往需要批量访问列数据(当用户主要关心同一属性的统计特性时),这时列存储方式的优势就会体现出来,列存储方式对属性的访问比行存储方式快很多,据有关报道,它的读取速度比行存储方式要快50 ~ 100倍。


(2)有利于提高数据的压缩比,同类数据存储在一起有助于提高数据之间的相关性,从而有利于实施高效压缩算法(如行程压缩算法等)。


表格的灰色背景部分表示行列结构,白色背景部分表示数据的物理分布,两种存储的数据都是从上至下,从左向右的排列(它们在硬盘上都是以一横为单位存储的,这样行存储存储的是一条完整的记录,列存储存储的是多条记录的相同字段数据)。行存储以一行记录为单位,列存储以列数据集合单位,或称列族(column family)。行存储的读写过程是一致的,都是从第一列开始,到最后一列结束。列存储的读取是列数据集中的一段或者全部数据,写入时,一行记录被拆分为多列,每一列数据追加到对应列的末尾处。

2 对比

从上面表格可以看出,行存储的写入是一次完成。如果这种写入建立在操作系统的文件系统上,可以保证写入过程的成功或者失败,数据的完整性因此可以确定。列存储由于需要把一行记录拆分成单列保存,写入次数明显比行存储多,再加上磁头需要在盘片上移动和定位花费的时间,实际时间消耗会更大。所以,行存储在写入上占有很大的优势。


还有数据修改,这实际也是一次写入过程。不同的是,数据修改是对磁盘上的记录做删除标记。行存储是在指定位置写入一次,列存储是将磁盘定位到多个列上分别写入,这个过程仍是行存储的列数倍。所以,数据修改也是以行存储占优。 数据读取时,行存储通常将一行数据完全读出,如果只需要其中几列数据的情况,就会存在冗余列,出于缩短处理时间的考量,消除冗余列的过程通常是在内存中进行的。列存储每次读取的数据是集合的一段或者全部,如果读取多列时,就需要移动磁头,再次定位到下一列的位置继续读取。 再谈两种存储的数据分布。由于列存储的每一列数据类型是同质的,不存在二义性问题。比如说某列数据类型为整型(int),那么它的数据集合一定是整型数据。这种情况使数据解析变得十分容易。相比之下,行存储则要复杂得多,因为在一行记录中保存了多种类型的数据,数据解析需要在多种数据类型之间频繁转换,这个操作很消耗CPU,增加了解析的时间。所以,列存储的解析过程更有利于分析大数据。

3 优化

显而易见,两种存储格式都有各自的优缺点:行存储的写入是一次性完成,消耗的时间比列存储少,并且能够保证数据的完整性,缺点是数据读取过程中会产生冗余数据,如果只有少量数据,此影响可以忽略;数量大可能会影响到数据的处理效率。列存储在写入效率、保证数据完整性上都不如行存储,它的优势是在读取过程,不会产生冗余数据,这对数据完整性要求不高的大数据处理领域,比如互联网,犹为重要。


改进集中在两方面:行存储读取过程中避免产生冗余数据,列存储提高读写效率。


如何改进它们的缺点,并保证优点呢?


行存储的改进:减少冗余数据首先是用户在定义数据时避免冗余列的产生;其次是优化数据存储记录结构,保证从磁盘读出的数据进入内存后,能够被快速分解,消除冗余列。要知道,目前市场上即使最低端CPU和内存的速度也比机械磁盘快上100-1000倍。如果用上高端的硬件配置,这个处理过程还要更快。


列存储的两点改进:1.在计算机上安装多块硬盘,以多线程并行的方式读写它们。多块硬盘并行工作可以减少磁盘读写竞用,这种方式对提高处理效率优势十分明显。缺点是需要更多的硬盘,这会增加投入成本,在大规模数据处理应用中是不小的数目,运营商需要认真考虑这个问题。2.对写过程中的数据完整性问题,可考虑在写入过程中加入类似关系数据库的“回滚”机制,当某一列发生写入失败时,此前写入的数据全部失效,同时加入散列码校验,进一步保证数据完整性。


这两种存储方案还有一个共同改进的地方:频繁的小量的数据写入对磁盘影响很大,更好的解决办法是将数据在内存中暂时保存并整理,达到一定数量后,一次性写入磁盘,这样消耗时间更少一些。目前机械磁盘的写入速度在20M-50M/秒之间,能够以批量的方式写入磁盘,效果也是不错的。


4 总结

两种存储方式各自的特性都决定了它们都不可能是完美的解决方案。如果首要考虑的是数据的完整性和可靠性,那么行存储方式是不二的选择,列存储方式只有在增加磁盘并改进软件设计后才能接近这样的目标。如果以保存数据为主,则行存储方式的写入性能比列存储方式高很多。在需要频繁读取单列数据的应用中,列存储方式是最合适的。如果每次读取多列数据,则两个方案可酌情选择:采用行存储方式时,设计中应考虑减少或避免冗余列;采用列存储方式时,为保证读写效率,每列数据应尽可能分别保存在不同的磁盘上,多个线程并行读写各自的数据,这样就可避免磁盘竞用的同时提高读写效率。无论选择哪种存储方式,将相同属性的数据存放在一起都是必需的,可减少磁头在磁盘上的移动,提高数据的读写效率。


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 JSON 分布式计算
数据湖,不“唬”你:这是大数据存储的新秩序!
数据湖,不“唬”你:这是大数据存储的新秩序!
71 2
|
3月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
158 0
|
6月前
|
存储 分布式计算 大数据
数据湖——大数据存储的新思维,如何打破传统束缚?
数据湖——大数据存储的新思维,如何打破传统束缚?
215 16
|
12月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
402 2
|
6月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
11月前
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
260 4
|
12月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
219 4
|
12月前
|
消息中间件 存储 缓存
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
201 3
|
12月前
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
164 1
|
12月前
|
存储 消息中间件 大数据
大数据-68 Kafka 高级特性 物理存储 日志存储概述
大数据-68 Kafka 高级特性 物理存储 日志存储概述
101 1

热门文章

最新文章