Linux内核死锁检测工具——Lockdep

简介: Linux内核死锁检测工具——Lockdep

前言

死锁是指两个或多个进程因争夺资源而造成的互相等待的现象,如进程A需要资源X,进程B需要资源Y,而双方都掌握对方所需要的资源,且都不释放,这会导致死锁。

在内核开发中,时常要考虑并发设计,即使采用正确的编程思路,也不可能避免会发生死锁。在Linux内核中,常见的死锁有如下两种:

  • 递归死锁:如在中断延迟操作中使用了锁,和外面的锁构成了递归死锁。
  • AB-BA死锁:多个锁因处理不当而引发死锁,多个内核路径上的锁处理顺序不一致也会导致死锁。

Linux内核在2006年引入了死锁调试模块lockdeplockdep会跟踪每个锁的自身状态和各个锁之间的依赖关系,经过一系列的验证规则来确保锁之间依赖关系是正确。

配置内核

要在Linux内核中使用lockdep功能,需要打开CONFIG_DEBUG_LOCKDEP选项:

CONFIG_LOCK_STAT=y
CONFIG_PROVE_LOCKING=y
CONFIG_DEBUG_LOCKDEP=y

在proc目录下会有lockdeplockdep_chainslockdep_stats三个文件节点,这说明lockdep模块已经生效:

然后重新编译内核,更换内核重启系统。

简单的AB-BA死锁案例

下面举一个简单的AB-BA死锁的例子:

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
static DEFINE_SPINLOCK(hack_spinA);
static DEFINE_SPINLOCK(hack_spinB);
void hack_spinAB(void)
{
    printk("hack_lockdep:A->B\n");
    spin_lock(&hack_spinA);
    spin_lock(&hack_spinB);
}
void hack_spinBA(void)
{
    printk("hack_lockdep:B->A\n");
    spin_lock(&hack_spinB);
}
static int __init lockdep_test_init(void)
{
    printk("figo:my lockdep module init\n");
    hack_spinAB();
    hack_spinBA();
    return 0;
}
static void __exit lockdep_test_exit(void)
{
  printk("goodbye\n");
}
module_init(lockdep_test_init);
module_exit(lockdep_test_exit);
MODULE_LICENSE("GPL");

上述代码初始化了两个自旋锁,其中hack_spinAB()函数分别申请了hack_spinA锁和hack_spinB锁,hack_spinBA()函数要申请hack_spinB锁。因为刚才锁hack_spinB已经被成功获取且还没有释放,所以它会一直等待,而且它也被锁在hack_spinA的临界区里。

现象:

[root@imx6ull:~]# insmod lockdep_test.ko 
[  437.981262] figo:my lockdep module init
[  437.985145] hack_lockdep:A->B
[  437.989054] hack_lockdep:B->A
[  437.992304] 
[  437.993819] =============================================
[  437.999229] [ INFO: possible recursive locking detected ]
[  438.004641] 4.9.88 #2 Tainted: G           O   
[  438.009180] ---------------------------------------------
[  438.014589] insmod/367 is trying to acquire lock:
[  438.019303]  (hack_spinB){+.+...}, at: [<7f00a030>] lockdep_test_init+0x30/0x3c [lockdep_test]
[  438.028006] but task is already holding lock:
[  438.032547]  (hack_spinB){+.+...}, at: [<7f008038>] hack_spinAB+0x38/0x3c [lockdep_test]
[  438.040715] other info that might help us debug this:
[  438.045950]  Possible unsafe locking scenario:
[  438.045950] 
[  438.051883]        CPU0
[  438.054337]        ----
[  438.056790]   lock(hack_spinB);
[  438.059975]   lock(hack_spinB);
[  438.063160] 
[  438.063160]  *** DEADLOCK ***
[  438.063160] 
[  438.069094]  May be due to missing lock nesting notation
[  438.069094] 
[  438.075896] 2 locks held by insmod/367:
[  438.079740]  #0:  (hack_spinA){+.+...}, at: [<7f008030>] hack_spinAB+0x30/0x3c [lockdep_test]
[  438.088358]  #1:  (hack_spinB){+.+...}, at: [<7f008038>] hack_spinAB+0x38/0x3c [lockdep_test]
[  438.096977] 
[  438.096977] stack backtrace:
[  438.101352] CPU: 0 PID: 367 Comm: insmod Tainted: G           O    4.9.88 #2
[  438.108410] Hardware name: Freescale i.MX6 UltraLite (Device Tree)
[  438.114628] [<801136cc>] (unwind_backtrace) from [<8010e78c>] (show_stack+0x20/0x24)
[  438.122396] [<8010e78c>] (show_stack) from [<804ccc34>] (dump_stack+0xa0/0xcc)
[  438.129646] [<804ccc34>] (dump_stack) from [<8018f020>] (__lock_acquire+0x8bc/0x1d4c)
[  438.137502] [<8018f020>] (__lock_acquire) from [<80190b78>] (lock_acquire+0xf4/0x2f8)
[  438.145358] [<80190b78>] (lock_acquire) from [<80c94a0c>] (_raw_spin_lock+0x4c/0x84)
[  438.153129] [<80c94a0c>] (_raw_spin_lock) from [<7f00a030>] (lockdep_test_init+0x30/0x3c [lockdep_test])
[  438.162638] [<7f00a030>] (lockdep_test_init [lockdep_test]) from [<80102004>] (do_one_initcall+0x54/0x184)
[  438.172315] [<80102004>] (do_one_initcall) from [<80229624>] (do_init_module+0x74/0x1f8)
[  438.180431] [<80229624>] (do_init_module) from [<801dac54>] (load_module+0x201c/0x279c)
[  438.188461] [<801dac54>] (load_module) from [<801db648>] (SyS_finit_module+0xc4/0xfc)
[  438.196317] [<801db648>] (SyS_finit_module) from [<80109680>] (ret_fast_syscall+0x0/0x1c)

提示信息显示:尝试获取hack_spinB锁,但是该锁已经在函数hack_spinAB中被锁定

lockdep已经很清晰地显示了死锁发生的路径和发生时函数调用的栈信息,根据这些信息可以很快速地定位问题和解决问题。

实际项目中的死锁

下面的例子要复杂一些,这是从实际项目中抽取出来的死锁,更具有代表性。

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/delay.h>
static DEFINE_MUTEX(mutex_a);
static struct delayed_work delay_task;
static void lockdep_timefunc(unsigned long);
static DEFINE_TIMER(lockdep_timer, lockdep_timefunc, 0, 0);
static void lockdep_timefunc(unsigned long dummy)
{
    schedule_delayed_work(&delay_task, 10);
    mod_timer(&lockdep_timer, jiffies + msecs_to_jiffies(100));
}
static void lockdep_test_work(struct work_struct *work)
{
    mutex_lock(&mutex_a);
    mdelay(300);//处理一些事情,这里用mdelay替代
    mutex_unlock(&mutex_a);
}
static int lockdep_thread(void *nothing)
{
    set_freezable();//清除当前线程标志flags中的PF_NOFREEZE位,表示当前线程能进入挂起或休眠状态。
    set_user_nice(current, 0);
    while(!kthread_should_stop()){
        mdelay(500);//处理一些事情,这里用mdelay替代
        //遇到某些特殊情况,需要取消delay_task
        mutex_lock(&mutex_a);
        cancel_delayed_work_sync(&delay_task);
        mutex_unlock(&mutex_a);
    }
    return 0;
}
static int __init lockdep_test_init(void)
{
    printk("figo:my lockdep module init\n");
   struct task_struct *lock_thread;
   /*创建一个线程来处理某些事情*/
   lock_thread = kthread_run(lockdep_thread, NULL, "lockdep_test");
   /*创建一个延迟的工作队列*/
   INIT_DELAYED_WORK(&delay_task, lockdep_test_work);
   /*创建一个定时器来模拟某些异步事件,如中断等*/
   lockdep_timer.expires = jiffies + msecs_to_jiffies(500);
   add_timer(&lockdep_timer);
    return 0;
}
static void __exit lockdep_test_exit(void)
{
  printk("goodbye\n");
}
MODULE_LICENSE("GPL");
module_init(lockdep_test_init);
module_exit(lockdep_test_exit);

首先创建一个lockdep_thread内核线程,用于周期性地处理某些事情,然后创建一个名为lockdep_test_worker的工作队列来处理一些类似于中断下半部的延迟操作,最后使用一个定时器来模拟某些异步事件(如中断)。

在lockdep_thread内核线程中,某些特殊情况下常常需要取消工作队列。代码中首先申请了一个mutex_a互斥锁,然后调用cancel_delayed_work_sync()函数取消工作队列。另外,定时器定时地调度工作队列,并在回调函数lockdep_test_worker()函数中申请mutex_a互斥锁。

以上便是该例子的调用场景,下面是运行时捕捉到死锁信息:

[root@imx6ull:~]# insmod lockdep_test.ko 
[  370.477536] figo:my lockdep module init
[root@imx6ull:~]# [  371.124433] 
[  371.125970] ======================================================
[  371.132162] [ INFO: possible circular locking dependency detected ]
[  371.138445] 4.9.88 #2 Tainted: G           O   
[  371.142987] -------------------------------------------------------
[  371.149265] kworker/0:2/104 is trying to acquire lock:
[  371.154414]  (mutex_a){+.+...}, at: [<7f004078>] lockdep_test_work+0x24/0x58 [lockdep_test]
[  371.162852] but task is already holding lock:
[  371.167392]  ((&(&delay_task)->work)){+.+...}, at: [<80157104>] process_one_work+0x1ec/0x8bc
[  371.175912] which lock already depends on the new lock.
[  371.175912] 
[  371.182799] 
[  371.182799] the existing dependency chain (in reverse order) is:
[  371.190291] 
-> #1 ((&(&delay_task)->work)){+.+...}:
[  371.195432]        flush_work+0x4c/0x278
[  371.199371]        __cancel_work_timer+0xa8/0x1d0
[  371.204088]        cancel_delayed_work_sync+0x1c/0x20
[  371.209157]        lockdep_thread+0x84/0xa4 [lockdep_test]
[  371.214658]        kthread+0x120/0x124
[  371.218423]        ret_from_fork+0x14/0x38
[  371.222529] 
-> #0 (mutex_a){+.+...}:
[  371.226374]        lock_acquire+0xf4/0x2f8
[  371.230487]        mutex_lock_nested+0x70/0x4bc
[  371.235036]        lockdep_test_work+0x24/0x58 [lockdep_test]
[  371.240797]        process_one_work+0x2b0/0x8bc
[  371.245342]        worker_thread+0x68/0x5c4
[  371.249538]        kthread+0x120/0x124
[  371.253301]        ret_from_fork+0x14/0x38
[  371.257407] 
[  371.257407] other info that might help us debug this:
[  371.257407] 
[  371.265424]  Possible unsafe locking scenario:
[  371.265424] 
[  371.271353]        CPU0                    CPU1
[  371.275891]        ----                    ----
[  371.280428]   lock((&(&delay_task)->work));
[  371.284656]                                lock(mutex_a);
[  371.290098]                                lock((&(&delay_task)->work));
[  371.296843]   lock(mutex_a);
[  371.299768] 
[  371.299768]  *** DEADLOCK ***
[  371.299768] 
[  371.305704] 2 locks held by kworker/0:2/104:
[  371.309981]  #0:  ("events"){.+.+.+}, at: [<80157104>] process_one_work+0x1ec/0x8bc
[  371.317729]  #1:  ((&(&delay_task)->work)){+.+...}, at: [<80157104>] process_one_work+0x1ec/0x8bc
[  371.326690] 
[  371.326690] stack backtrace:
[  371.331066] CPU: 0 PID: 104 Comm: kworker/0:2 Tainted: G           O    4.9.88 #2
[  371.338558] Hardware name: Freescale i.MX6 UltraLite (Device Tree)
[  371.344760] Workqueue: events lockdep_test_work [lockdep_test]
[  371.350643] [<801136cc>] (unwind_backtrace) from [<8010e78c>] (show_stack+0x20/0x24)
[  371.358409] [<8010e78c>] (show_stack) from [<804ccc34>] (dump_stack+0xa0/0xcc)
[  371.365659] [<804ccc34>] (dump_stack) from [<8018c6e4>] (print_circular_bug+0x208/0x320)
[  371.373774] [<8018c6e4>] (print_circular_bug) from [<801900a0>] (__lock_acquire+0x193c/0x1d4c)
[  371.382408] [<801900a0>] (__lock_acquire) from [<80190b78>] (lock_acquire+0xf4/0x2f8)
[  371.390259] [<80190b78>] (lock_acquire) from [<80c8fda0>] (mutex_lock_nested+0x70/0x4bc)
[  371.398373] [<80c8fda0>] (mutex_lock_nested) from [<7f004078>] (lockdep_test_work+0x24/0x58 [lockdep_test])
[  371.408140] [<7f004078>] (lockdep_test_work [lockdep_test]) from [<801571c8>] (process_one_work+0x2b0/0x8bc)
[  371.417988] [<801571c8>] (process_one_work) from [<8015783c>] (worker_thread+0x68/0x5c4)
[  371.426099] [<8015783c>] (worker_thread) from [<8015e6c8>] (kthread+0x120/0x124)
[  371.433516] [<8015e6c8>] (kthread) from [<8010971c>] (ret_from_fork+0x14/0x38)

lockdep信息首先提示可能出现递归死锁"possible circular locking dependency detected",然后提示"kworker/0:2/104"线程尝试获取mutex_a互斥锁,但是该锁已经被其他进程持有,持有该锁的进程在&delay_task->work里。

接下来的函数调用栈显示上述尝试获取mutex_a锁的调用路径。两个路径如下:

(1)内核线程lockdep_thread首先成功获取了mutex_a互斥锁,然后调用cancel_delayed_work_sync()函数取消kworker。注意,cancel_delayed_work_sync()函数会调用flush操作并等待所有的kworker回调函数执行完,然后才会调用mutex_unlock(&mutex_a)释放该锁。

(2)kworker回调函数lockdep_test_worker()首先会尝试获取mutex_a互斥锁。注意,刚才内核线程lockdep_thread已经获取了mutex_a互斥锁,并且一直在等待当前kworker回调函数执行完,所以死锁发生了

下面是该死锁场景的CPU调用关系:

CPU0                      CPU1
----------------------------------------------------------------
内核线程lockdep_thread
lock(mutex_a)
   cancel_delayed_work_sync()
等待worker执行完成     
                                  delay worker回调函数
                                  lock(mutex_a);尝试获取锁

end

猜你喜欢

Linux内核基础篇——常用调试技巧汇总

Linux内核基础篇——动态输出调试

Linux内核基础篇——printk调试

Linux内核基础篇——initcall

RISC-V SiFive U64内核——HPM硬件性能监视器

RISC-V SiFive U64内核——L2 Prefetcher预取器

RISC-V SiFive U54内核——PMP物理内存保护

RISC-V SiFive U54内核——PLIC平台级中断控制器

RISC-V SiFive U54内核——CLINT中断控制器

RISC-V SiFive U54内核——中断和异常详解

实战 | RISC-V Linux入口地址2M预留内存优化

RISC-V Linux启动之页表创建分析

RISC-V Linux汇编启动过程分析

教你在QEMU上运行RISC-V Linux

OpenSBI三种固件的区别

写给新手的MMU工作原理

相关文章
|
2月前
|
缓存 Linux 开发者
Linux内核中的并发控制机制
本文深入探讨了Linux操作系统中用于管理多线程和进程的并发控制的关键技术,包括原子操作、锁机制、自旋锁、互斥量以及信号量。通过详细分析这些技术的原理和应用,旨在为读者提供一个关于如何有效利用Linux内核提供的并发控制工具以优化系统性能和稳定性的综合视角。
|
2月前
|
缓存 负载均衡 算法
深入探索Linux内核的调度机制
本文旨在揭示Linux操作系统核心的心脏——进程调度机制。我们将从Linux内核的架构出发,深入剖析其调度策略、算法以及它们如何共同作用于系统性能优化和资源管理。不同于常规摘要提供文章概览的方式,本摘要将直接带领读者进入Linux调度机制的世界,通过对其工作原理的解析,展现这一复杂系统的精妙设计与实现。
105 8
|
2月前
|
Linux 网络安全 数据安全/隐私保护
Linux 超级强大的十六进制 dump 工具:XXD 命令,我教你应该如何使用!
在 Linux 系统中,xxd 命令是一个强大的十六进制 dump 工具,可以将文件或数据以十六进制和 ASCII 字符形式显示,帮助用户深入了解和分析数据。本文详细介绍了 xxd 命令的基本用法、高级功能及实际应用案例,包括查看文件内容、指定输出格式、写入文件、数据比较、数据提取、数据转换和数据加密解密等。通过掌握这些技巧,用户可以更高效地处理各种数据问题。
148 8
|
1天前
|
安全 网络协议 Linux
结合 `nc` 工具利用笑脸漏洞(Smile Bug)攻击 Metasploitable2 Linux
本文介绍如何使用 `nc`(Netcat)工具结合笑脸漏洞(Smiley Bug)攻击 Metasploitable2 Linux 靶机。首先概述了 `nc` 的基本功能和高级用法,包括建立连接、监听端口、文件传输等操作。接着详细描述了笑脸漏洞的原理及其在网络攻防中的应用,展示了通过 `nc` 发送恶意输入检测漏洞的方法。最后结合 Python 脚本实现更复杂的攻击场景,并强调了合法性和环境隔离的重要性。
25 13
|
5天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
33 15
|
8天前
|
运维 监控 Linux
推荐几个不错的 Linux 服务器管理工具
推荐几个不错的 Linux 服务器管理工具
|
1月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
1月前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
1月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####

热门文章

最新文章