L1范数(L1 norm)

简介: L1范数(L1 norm),也称为曼哈顿距离(Manhattan distance)或绝对值范数(Absolute value norm),是向量中各个元素绝对值之和。它在数学和机器学习中经常被用作一种正则化项或稀疏性度量。

L1范数(L1 norm),也称为曼哈顿距离(Manhattan distance)或绝对值范数(Absolute value norm),是向量中各个元素绝对值之和。它在数学和机器学习中经常被用作一种正则化项或稀疏性度量。

对于一个n维向量x = [x1, x2, ..., xn],其L1范数可以通过以下公式计算:

||x||1 = |x1| + |x2| + ... + |xn|

L1范数可以用于特征选择、稀疏表示和损失函数等方面。通过最小化L1范数,可以鼓励向量中的某些元素为零,从而实现稀疏性。此外,L1范数还具有一些优化性质,使其在一些问题中更具有优势。

以下是一个简单的Python代码示例,演示如何计算一个向量的L1范数:

python
Copy
def l1_norm(vector):
norm = sum(abs(element) for element in vector)
return norm

示例向量

vector = [1, -2, 3, -4, 5]

计算L1范数

norm = l1_norm(vector)

print("L1范数:", norm)
运行以上代码,将会输出向量 [1, -2, 3, -4, 5] 的L1范数为 15。

在机器学习中,L1范数经常用于特征选择和稀疏模型的训练。通过最小化目标函数中的L1范数正则化项,可以促使模型选择重要的特征,从而提高模型的泛化能力和解释性。

《机器学习》(西瓜书) - 周志华:这本经典的机器学习教材包含了L1范数的介绍和应用示例,特别是在特征选择和稀疏模型方面的应用。

《The Elements of Statistical Learning》- Trevor Hastie, Robert Tibshirani, Jerome Friedman:这本书是机器学习中的经典教材,其中包含了对L1范数正则化和稀疏性的详细讨论。

相关论文和研究文章:在学术搜索引擎(如Google Scholar)上搜索关键词 "L1 norm"、"L1 regularization"、"L1 regularization in machine learning",可以找到大量与L1范数和正则化相关的研究论文和文章。

网络教程和博客文章:在网上搜索关键词 "L1 norm explained" 或 "L1 regularization tutorial",你可以找到很多教程和博客文章,介绍L1范数的概念、计算方法以及在机器学习中的应用。

Coursera 和 Udemy:这些在线学习平台提供各种机器学习和数据科学的课程,其中一些课程会涉及到L1范数正则化和稀疏模型的讲解和实践。

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
视觉 注意力机制——通道注意力、空间注意力、自注意力
本文介绍注意力机制的概念和基本原理,并站在计算机视觉CV角度,进一步介绍通道注意力、空间注意力、混合注意力、自注意力等。
11952 58
|
机器学习/深度学习 开发框架 .NET
YOLOv5的Tricks | 【Trick6】学习率调整策略(One Cycle Policy、余弦退火等)
YOLOv5的Tricks | 【Trick6】学习率调整策略(One Cycle Policy、余弦退火等)
3927 0
YOLOv5的Tricks | 【Trick6】学习率调整策略(One Cycle Policy、余弦退火等)
|
机器学习/深度学习 人工智能 数据可视化
ShuffleNet:极致轻量化卷积神经网络(分组卷积+通道重排)
我们引入了一个高效计算的CNN结构名字叫做shuffleNet,这个结构被设计用来解决部署算力非常有限的移动设备问题,这个新的结构使用了两个新的操作,pointwise group convolution 和 channel shuffle能够在极大减少计算量的同时保持一定的精度。我们在ImageNet classification和MS COCO目标检测数据集上做实验论证了ShuffleNet和其他的结构相比有着很好的性能。比如,相比于mobilenet,shufflenet在ImageNet 分类任务上有着更低的top-1错误率(错误率是7.8%)需要的计算量为40MFLOPs。在一个AR
3258 0
ShuffleNet:极致轻量化卷积神经网络(分组卷积+通道重排)
|
9月前
|
人工智能 物联网 编译器
《近阈值计算:硬件加速芯片的低功耗密码》
近阈值计算(NTC)技术通过将晶体管工作电压降至接近阈值电压,有效降低功耗并提升芯片性能,成为硬件加速芯片领域的研究热点。NTC优化了电路设计、器件选型和系统级协同设计,采用流水线技术和冗余设计提高稳定性和可靠性。尽管面临性能、稳定性和设计复杂性的挑战,NTC为低功耗高性能芯片提供了新方向,推动人工智能、物联网等领域的发展。
253 15
|
10月前
|
数据采集 前端开发 物联网
【项目实战】通过LLaMaFactory+Qwen2-VL-2B微调一个多模态医疗大模型
本文介绍了一个基于多模态大模型的医疗图像诊断项目。项目旨在通过训练一个医疗领域的多模态大模型,提高医生处理医学图像的效率,辅助诊断和治疗。作者以家中老人的脑部CT为例,展示了如何利用MedTrinity-25M数据集训练模型,经过数据准备、环境搭建、模型训练及微调、最终验证等步骤,成功使模型能够识别CT图像并给出具体的诊断意见,与专业医生的诊断结果高度吻合。
17830 7
【项目实战】通过LLaMaFactory+Qwen2-VL-2B微调一个多模态医疗大模型
|
机器学习/深度学习 存储 自然语言处理
Transformers从入门到精通:token和它的三种粒度
大家对于token的概念可能司空见惯了,现在的大语言模型的计费方式一般都采用输入和输出的token数量来计费。那到底什么是token,它的作用是什么?【6月更文挑战第6天】
903 6
|
数据挖掘
InsTag:大语言模型监督微调数据标签标注工具
魔搭社区发布了一个名为“InsTagger”的工具,用于分析LLM(大语言模型)中符合人类偏好的监督微调(SFT)数据。InsTagger 是基于 InsTag 方法训练的本地指令标签标注器,用于为符合人类偏好的监督微调数据集中的指令标注描述其意图和语义的标签,从而指导指令的分流或监督微调数据集的分析。
|
机器学习/深度学习 算法 搜索推荐
L0范数(L0 norm)
L0范数(L0 norm)是指向量中非零元素的个数。与L1范数和L2范数不同,L0范数并不是一种常见的范数形式,它更多地被用作一种表示稀疏性的度量。
967 1
|
机器学习/深度学习 搜索推荐 Python
L2范数(L2 norm)
L2范数(L2 norm),也称为欧几里德范数(Euclidean norm)或2-范数,是向量元素的平方和的平方根。它在数学和机器学习中经常被用作一种正则化项、距离度量或误差度量。
10173 76
|
算法 PyTorch Go
深入解析yolov5,为什么算法都是基于yolov5做改进的?(一)
深入解析yolov5,为什么算法都是基于yolov5做改进的?(一)