【数据结构】初识(下)

简介: 【数据结构】初识(下)

2.3常见时间复杂度计算举例


实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}


实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}


393a1f3c08d7453d8bc0f05e17c036f2.png


实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 10; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

1b560fb3c95d45a6a21e2301a294406f.png


实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
//在一个字符串数组中查找一个字符的函数
const char* strchr(const char* str, int character)
{
  while (*str)
  {
    if (*str == character)
      return str;
    else
      str++;
  }
  return NULL;
}


实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

dcb3b3a49cf94b21b503b6d27a02da88.png

实例6:(二分查找法)


// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 while (begin < end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid;
 else
 return mid;
 }
 return -1;
}


41f6c323a7a3413fbb4473a212b7adc5.png


实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 return Fac(N-1)*N;
}


3490926444744a54a5f50f98f750a070.pngac73851b387b489bb385917518232ce7.png


实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 return Fib(N-1) + Fib(N-2);
}


实例答案及分析:


1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

2. 实例2基本操作执行了M+N次,有两个未知数MN,时间复杂度为 O(N+M)

3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)

4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最 坏,时间复杂度为 O(N^2)

6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)

7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树讲解)


总结:在计算时间复杂度时,不能直接纯粹数循环,要看算法逻辑。


3.空间复杂度


👀 空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

👀 空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

👀 空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法

👀 注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。


实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}


实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}


实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 return Fac(N-1)*N;
}


实例答案及分析:

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)

2. 实例2动态开辟了N个空间,空间复杂度为 O(N)

3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

总结: 空间可以重复利用,不累计,时间是一去不返,要累计的。


4. 常见复杂度对比


一般算法常见的复杂度如下:


b3dd30bb98164ed9b32cc3b46a03640f.png2717184cc45c42a881d45a97b546ed4a.pngimage.gif


🔥好了, 今天的内容就分享到这里了,如果您觉得这篇文章对您有所帮助,请给我一个赞或分享给您的朋友,让更多人受益。您的支持将是我不断创作的动力!🤞

目录
相关文章
|
9月前
|
存储 C++
c++数据结构
c++数据结构
58 0
|
4月前
|
存储 NoSQL 索引
【数据结构】数据结构学什么?
【数据结构】数据结构学什么?
53 5
|
6月前
|
存储 JavaScript 前端开发
复杂数据结构
【8月更文挑战第25天】
52 0
|
9月前
|
存储 算法 C#
C#编程与数据结构的结合
【4月更文挑战第21天】本文探讨了C#如何结合数据结构以构建高效软件,强调数据结构在C#中的重要性。C#作为面向对象的编程语言,提供内置数据结构如List、Array和Dictionary,同时也支持自定义数据结构。文章列举了C#实现数组、链表、栈、队列等基础数据结构的示例,并讨论了它们在排序、图算法和数据库访问等场景的应用。掌握C#数据结构有助于编写高性能、可维护的代码。
73 3
|
存储 人工智能 移动开发
数据结构
线性表
182 0
|
9月前
|
存储 算法
【数据结构】什么是数据结构?
【数据结构】什么是数据结构?
153 0
|
存储 机器学习/深度学习
数据结构94-深入链地址法
数据结构94-深入链地址法
78 0
数据结构94-深入链地址法