一文带你深入理解JVM - ZGC垃圾收集器

简介: ZGC(Z Garbage Collector)是一款由Oracle公司研发的,以低延迟为首要目标的一款垃圾收集器。它是基于动态Region内存布局,(暂时)不设年龄分代,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的收集器。在JDK 11新加入,还在实验阶段,主要特点是:回收TB级内存(最大4T),停顿时间不超过10ms。

原文作者:xiaolyuh

ZGC(Z Garbage Collector)是一款由Oracle公司研发的,以低延迟为首要目标的一款垃圾收集器。它是基于动态Region内存布局,(暂时)不设年龄分代,使用了读屏障染色指针内存多重映射等技术来实现可并发的标记-整理算法的收集器。在JDK 11新加入,还在实验阶段,主要特点是:回收TB级内存(最大4T),停顿时间不超过10ms

动态Region

ZGC的Region可以具有如图所示的大、中、小三类容量:

  • 小型Region(Small Region):容量固定为2MB,用于放置小于256KB的小对象。
  • 中型Region(Medium Region):容量固定为32MB,用于放置大于等于256KB但小于4MB的对象。·
  • 大型Region(Large Region):容量不固定,可以动态变化,但必须为2MB的整数倍,用于放置4MB或以上的大对象。每个大型Region中只会存放一个大对象,最小容量可低至4MB,所有大型Region可能小于中型Region。大型Region在ZGC的实现中是不会被重分配的,因为复制一个大对象的代价非常高昂。

染色指针技术

HotSpot虚拟机的标记实现方案有如下几种:

  1. 把标记直接记录在对象头上(如Serial收集器);
  2. 把标记记录在与对象相互独立的数据结构上(如G1、Shenandoah使用了一种相当于堆内存的1/64大小的,称为BitMap的结构来记录标记信息);
  3. 直接把标记信息记在引用对象的指针上(如ZGC)

染色指针是一种直接将少量额外的信息存储在指针上的技术。目前在Linux下64位的操作系统中高18位是不能用来寻址的,但是剩余的46为却可以支持64T的空间,到目前为止我们几乎还用不到这么多内存。于是ZGC将46位中的高4位取出,用来存储4个标志位,剩余的42位可以支持4T的内存,如图所示:

  • Linux下64位指针的高18位不能用来寻址,所有不能使用;
  • Finalizable:表示是否只能通过finalize()方法才能被访问到,其他途径不行;
  • Remapped:表示是否进入了重分配集(即被移动过);
  • Marked1、Marked0:表示对象的三色标记状态;
  • 最后42用来存对象地址,最大支持4T;

三色标记

在并发的可达性分析算法中我们使用三色标记(Tri-color Marking)来标记对象是否被收集器访问过:

  • 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
  • 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象
  • 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。

可达性分析的扫描过程,其实就是一股以灰色为波峰的波纹从黑向白推进的过程,但是在并发的推进过程中会产生“对象消失”的问题,如图:

对象消失理论,只有同时满足才会发生对象消失:

  • 赋值器插入了一条或多条从黑色对象到白色对象的新引用;
  • 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用;

要解决对象消失问题只需要破坏其中一条就行了,目前常用有两种方案:

  • 增量更新(Incremental Update):增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。
  • 原始快照(Snapshot At TheBeginning,SATB):原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。

以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。CMS是基于增量更新来做并发标记的,G1、Shenandoah则是用原始快照来实现。

染色指针的三大优势

  1. 一旦某个Region的存活对象被移走之后,这个Region立即就能够被释放和重用掉,而不必等待整个堆中所有指向该Region的引用都被修正后才能清理,这使得理论上只要还有一个空闲Region,ZGC就能完成收集。而Shenandoah需要等到更新阶段结束才能释放回收集中的Region,如果Region里面对象都存活的时候,需要1:1的空间才能完成收集。
  2. 染色指针可以大幅减少在垃圾收集过程中内存屏障的使用数量,ZGC只使用了读屏障。
  3. 染色指针具备强大的扩展性,它可以作为一种可扩展的存储结构用来记录更多与对象标记、重定位过程相关的数据,以便日后进一步提高性能。

内存多重映射

ZGC使用了内存多重映射(Multi-Mapping)将多个不同的虚拟内存地址映射到同一个物理内存地址上,这是一种多对一映射,意味着ZGC在虚拟内存中看到的地址空间要比实际的堆内存容量来得更大。把染色指针中的标志位看作是地址的分段符,那只要将这些不同的地址段都映射到同一个物理内存空间,经过多重映射转换后,就可以使用染色指针正常进行寻址了,效果如图:

ZGC的多重映射只是它采用染色指针技术的伴生产物

读屏障

当对象从堆中加载的时候,就会使用到读屏障(Load Barrier)。这里使用读屏障的主要作用就是检查指针上的三色标记位,根据标记位判断出对象是否被移动过,如果没有可以直接访问,如果移动过就需要进行“自愈”(对象访问会变慢,但也只会有一次变慢),当“自愈”完成后,后续访问就不会变慢了。

读写屏障可以理解成对象访问的“AOP”操作

ZGC运作过程

ZGC的运作过程大致可划分为以下四个大的阶段:

  • 并发标记(Concurrent Mark):与G1、Shenandoah一样,并发标记是遍历对象图做可达性分析的阶段,它的初始标记和最终标记也会出现短暂的停顿,整个标记阶段只会更新染色指针中的Marked 0、Marked 1标志位。
  • 并发预备重分配(Concurrent Prepare for Relocate):这个阶段需要根据特定的查询条件统计得出本次收集过程要清理哪些Region,将这些Region组成重分配集(Relocation Set)。ZGC每次回收都会扫描所有的Region,用范围更大的扫描成本换取省去G1中记忆集的维护成本。
  • 并发重分配(Concurrent Relocate):重分配是ZGC执行过程中的核心阶段,这个过程要把重分配集中的存活对象复制到新的Region上,并为重分配集中的每个Region维护一个转发表(Forward Table),记录从旧对象到新对象的转向关系。ZGC收集器能仅从引用上就明确得知一个对象是否处于重分配集之中,如果用户线程此时并发访问了位于重分配集中的对象,这次访问将会被预置的内存屏障所截获,然后立即根据Region上的转发表记录将访问转发到新复制的对象上,并同时修正更新该引用的值,使其直接指向新对象,ZGC将这种行为称为指针的“自愈”(Self-Healing)能力。

ZGC的染色指针因为“自愈”(Self-Healing)能力,所以只有第一次访问旧对象会变慢,而Shenandoah的Brooks转发指针是每次都会变慢。 一旦重分配集中某个Region的存活对象都复制完毕后,这个Region就可以立即释放用于新对象的分配,但是转发表还得留着不能释放掉,因为可能还有访问在使用这个转发表。

  • 并发重映射(Concurrent Remap):重映射所做的就是修正整个堆中指向重分配集中旧对象的所有引用,但是ZGC中对象引用存在“自愈”功能,所以这个重映射操作并不是很迫切。ZGC很巧妙地把并发重映射阶段要做的工作,合并到了下一次垃圾收集循环中的并发标记阶段里去完成,反正它们都是要遍历所有对象的,这样合并就节省了一次遍历对象图的开销。

ZGC存在的问题

ZGC最大的问题是浮动垃圾。

浮动垃圾

ZGC的停顿时间是在10ms以下,但是ZGC的执行时间还是远远大于这个时间的。假如ZGC全过程需要执行10分钟,在这个期间由于对象分配速率很高,将创建大量的新对象,这些对象很难进入当次GC,所以只能在下次GC的时候进行回收,这些只能等到下次GC才能回收的对象就是浮动垃圾

ZGC没有分代概念,每次都需要进行全堆扫描,导致一些“朝生夕死”的对象没能及时的被回收。

解决方案

目前唯一的办法是增大堆的容量,使得程序得到更多的喘息时间,但是这个也是一个治标不治本的方案。如果需要从根本上解决这个问题,还是需要引入分代收集,让新生对象都在一个专门的区域中创建,然后专门针对这个区域进行更频繁、更快的收集。

官方测试数据

停顿时间

在ZGC的停顿时间测试上,和其他收集器相比完全不在一个数量级,如图:

吞吐量

ZGC的“弱项”吞吐量方面,以低延迟为首要目标的ZGC已经达到了以高吞吐量为目标Parallel Scavenge的99%,直接超越了G1,如图:

优缺点

  • 优点:低停顿,高吞吐量,ZGC收集过程中额外耗费的内存小
  • 缺点:浮动垃圾

参考

《深入理解JAVA虚拟机》

相关文章
|
4月前
|
存储 算法 Oracle
极致八股文之JVM垃圾回收器G1&ZGC详解
本文作者分享了一些垃圾回收器的执行过程,希望给大家参考。
|
2月前
|
存储 监控 算法
JVM调优深度剖析:内存模型、垃圾收集、工具与实战
【10月更文挑战第9天】在Java开发领域,Java虚拟机(JVM)的性能调优是构建高性能、高并发系统不可或缺的一部分。作为一名资深架构师,深入理解JVM的内存模型、垃圾收集机制、调优工具及其实现原理,对于提升系统的整体性能和稳定性至关重要。本文将深入探讨这些内容,并提供针对单机几十万并发系统的JVM调优策略和Java代码示例。
63 2
|
4月前
|
存储 算法 Java
JVM自动内存管理之垃圾收集算法
文章概述了JVM内存管理和垃圾收集的基本概念,提供一个关于JVM内存管理和垃圾收集的基础理解框架。
JVM自动内存管理之垃圾收集算法
|
4月前
|
存储 算法 Java
JVM组成结构详解:类加载、运行时数据区、执行引擎与垃圾收集器的协同工作
【8月更文挑战第25天】Java虚拟机(JVM)是Java平台的核心,它使Java程序能在任何支持JVM的平台上运行。JVM包含复杂的结构,如类加载子系统、运行时数据区、执行引擎、本地库接口和垃圾收集器。例如,当运行含有第三方库的程序时,类加载子系统会加载必要的.class文件;运行时数据区管理程序数据,如对象实例存储在堆中;执行引擎执行字节码;本地库接口允许Java调用本地应用程序;垃圾收集器则负责清理不再使用的对象,防止内存泄漏。这些组件协同工作,确保了Java程序的高效运行。
34 3
|
5月前
|
存储 算法 安全
(八)JVM成神路之GC分区篇:G1、ZGC、ShenandoahGC高性能收集器深入剖析
在《GC分代篇》中,我们曾对JVM中的分代GC收集器进行了全面阐述,而在本章中重点则是对JDK后续新版本中研发推出的高性能收集器进行深入剖析。
208 12
|
4月前
|
C# UED 开发者
WPF打印功能实现秘籍:从页面到纸张,带你玩转WPF打印技术大揭秘!
【8月更文挑战第31天】在WPF应用开发中,打印功能至关重要,不仅能提升用户体验,还增强了应用的实用性。本文介绍WPF打印的基础概念与实现方法,涵盖页面元素打印、打印机设置及打印预览。通过具体案例,展示了如何利用`PrintDialog`和`PrintDocument`控件添加打印支持,并使用`PrinterSettings`类进行配置,最后通过`PrintPreviewWindow`实现打印预览功能。
493 0
|
4月前
|
C# UED 开发者
WPF动画大揭秘:掌握动画技巧,让你的界面动起来,告别枯燥与乏味!
【8月更文挑战第31天】在WPF应用开发中,动画能显著提升用户体验,使其更加生动有趣。本文将介绍WPF动画的基础知识和实现方法,包括平移、缩放、旋转等常见类型,并通过示例代码展示如何使用`DoubleAnimation`创建平移动画。此外,还将介绍动画触发器的使用,帮助开发者更好地控制动画效果,提升应用的吸引力。
246 0
|
4月前
|
算法 Java 程序员
【JVM的秘密花园】揭秘垃圾收集器的神秘面纱!
【8月更文挑战第25天】在Java虚拟机(JVM)中,垃圾收集(GC)自动管理内存,回收未使用的对象以避免内存泄漏和性能下降。本文深入介绍了JVM中的GC算法,包括串行、并行、CMS及G1等类型及其工作原理。选择合适的GC策略至关重要:小型应用适合串行收集器;大型应用或多核CPU环境推荐并行收集器或CMS;需减少停顿时间时,CMS是好选择;G1适用于大堆且对停顿时间敏感的应用。理解这些能帮助开发者优化程序性能和稳定性。
40 0
|
5月前
|
监控 算法 Java
深入理解Java虚拟机:垃圾收集机制的演变与最佳实践
【7月更文挑战第14天】本文将带领读者穿梭于JVM的心脏——垃圾收集器,探索其设计哲学、实现原理和性能调优。我们将从早期简单的收集算法出发,逐步深入到现代高效的垃圾收集策略,并分享一些实用的调优技巧,帮助开发者在编写和维护Java应用时做出明智的决策。
62 3
|
4月前
|
算法 Java
JVM自动内存管理之垃圾收集器
这篇文章是关于Java虚拟机(JVM)自动内存管理中的垃圾收集器的详细介绍。