深度剖析数据在内存中的储存

简介: 深度剖析数据在内存中的储存

整形在内存的储存

#include <stdio.h>
int main() {
  int a = 0x11223344;
}

将整形a赋值为0x11223344

然后监视内存的地址

将地址在内存调试窗口中搜索,可以找到在内存中a的存储为号线画起来的样子

这时就引发了一个问题为什么是倒着存储的?接下来就要讲解一下大小端

大小端

定义:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址

中;

小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。

注:大小端是针对非单字节的整形,因为大小端是按字节序

解释

按照0x11223344,高位和低位从左到右如下图


假设内存中低地址到高地址如下图

大端为:

小端为(就是vs的情况):


一道面试题,写一个程序如何判断是大端还是小端:

//代码1
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char *)&i);
}
int main()
{
int ret = check_sys();
if(ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}

代码解释初始化i=1用char*指针变量强转i的地址,再解引用就能获取到i的第一个字节的数如果是1表示是小端,如果是0表示是大端,1在内存中小端的存储为0x01000000

浮点型在内存中的存储

先看一段代码,大家先思考一下输出的结果分别是几

int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}

代码解释:

将n初始化,存9,将n的地址赋值给pFloat,

第一次输出为9;

第二次输出为*pFloat,是将n在存储的二进制按浮点数规则拿出来

然后将9.0按浮点数规则存储进n地址中

第三次输出是将n地址中按整形存储规则拿出

第四次输出是按浮点数规则拿出9.0

浮点数在内存中存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

详细解读:

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。

M表示有效数字,大于等于1,小于2。

2^E表示指数位。

例:

二进制转化成10进制小数点后为2^(小数点后几位)×内位数

1.5

二进制表示为1.1,科学计数为1.1×2^0

S=0;

M=1.1

E=0

9.5

二进制表示为1001.1,科学计数为1.0011×2^3

S=0

M=1.0011

E=3

单精度存储:

双精度存储:


EEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

首先,E为一个无符号整数(unsigned int)

这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,(比如这个数为0.5)所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

E又分为三种情况

第一种

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

比如:

0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为

1.0*2^(-1),其阶码为-1+127=126,表示为

01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

第二种

全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,

有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于

0的很小的数字。

第三种

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

解释前面的题目:

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成0.000000?

首先,将 0x00000009 拆分,二进制为00000000000000000000000000001001,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001。由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:V=(-1)^0 × 0.00000000000000000001001×2(-126)=1.001×2(-126)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看例题的第二部分。

请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?

首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,

即10000010。

所以,写成二进制形式,应该是s+E+M,即

这个32位的二进制数,还原成十进制,正是 1091567616 。

本章完。

9 -> 0000 0000 0000 0000 0000 0000 0000 1001

这个数按浮点数规则打印成10进制就是0.00000

9.0 -> 1001.0 ->(-1)01.00123 -> s=0, M=1.001,E=3+127=130

0 10000010 001 0000 0000 0000 0000 0000

这个数按整形规则打印成10进制就是1091567616

大家有什么问题都可以在评论区提问,我看见就会回,希望大家留下宝贵的建议,别忘记一键三连!!!!也可以看看我的主页ltzoro博主

更多系列传送门:

小白初始c语言

剖析函数栈帧的创建与销毁

新手专用练手项目–三子棋

小白的第二个项目–扫雷游戏

操作符详解

C语言初识指针

有符号位与无符号位超超超详解!!!


目录
相关文章
|
4天前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
24 11
|
27天前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
|
26天前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
55 1
|
30天前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
1月前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
88 1
|
1月前
|
缓存 安全 Java
使用 Java 内存模型解决多线程中的数据竞争问题
【10月更文挑战第11天】在 Java 多线程编程中,数据竞争是一个常见问题。通过使用 `synchronized` 关键字、`volatile` 关键字、原子类、显式锁、避免共享可变数据、合理设计数据结构、遵循线程安全原则和使用线程池等方法,可以有效解决数据竞争问题,确保程序的正确性和稳定性。
39 2
|
1月前
|
存储 编译器
数据在内存中的存储
数据在内存中的存储
42 4
|
3月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
378 0
|
1月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
1月前
|
存储 Java
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
这篇文章详细地介绍了Java对象的创建过程、内存布局、对象头的MarkWord、对象的定位方式以及对象的分配策略,并深入探讨了happens-before原则以确保多线程环境下的正确同步。
53 0
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配