第 12 天_动态规划【算法入门】

简介: 第 12 天_动态规划【算法入门】

70. 爬楼梯

难度 简单

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

官方

思路:动态规划
f(x)=f(x−1)+f(x−2)
f(0)=1
f(1)=1
感觉就像斐波那契数列
用了滚动数组
class Solution {
    public int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
}



198. 打家劫舍

难度 中等

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

官方

思路:
最简单子问题
只有1件,只能偷这间
只有2件,偷金额大的那间
k>2时
偷窃第 k 间房屋,那么就不能偷窃第 k−1 间房屋,偷窃总金额为前 k−2 间房屋的最高总金额与第 k 间房屋的金额之和。
不偷窃第 k 间房屋,偷窃总金额为前 k−1 间房屋的最高总金额。
在两个选项中选择偷窃总金额较大的选项,该选项对应的偷窃总金额即为前 k 间房屋能偷窃到的最高总金额。
class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }
        int[] dp = new int[length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[length - 1];
    }
}

上述方法使用了数组存储结果。考虑到每间房屋的最高总金额只和该房屋的前两间房屋的最高总金额相关,因此可以使用滚动数组,在每个时刻只需要存储前两间房屋的最高总金额。

class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }
        int first = nums[0], second = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            int temp = second;
            second = Math.max(first + nums[i], second);
            first = temp;
        }
        return second;
    }
}

复杂度分析

  • 时间复杂度:O(n)O(n),其中 nn 是数组长度。只需要对数组遍历一次。
  • 空间复杂度:O(1)O(1)。使用滚动数组,可以只存储前两间房屋的最高总金额,而不需要存储整个数组的结果,因此空间复杂度是 O(1)O(1)。

    作者:LeetCode-Solution

链接:https://leetcode-cn.com/problems/house-robber/solution/da-jia-jie-she-by-leetcode-solution/

来源:力扣(LeetCode)



120. 三角形最小路径和

难度 中等

给定一个三角形 triangle ,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 ii + 1

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
   2
  3 4
 6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

示例 2:

输入:triangle = [[-10]]
输出:-10

提示:

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -104 <= triangle[i][j] <= 104

    进阶:

你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题吗?

题解

思路:贪心算法
感觉可以用贪心算法
每次都走最小,总数就是最小
class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int min=0;
        int m=0;
        int indexM=0;
        for(int i=0;i<triangle.size();i++){
            List<Integer> l=triangle.get(i);
            if(i==0){
                indexM=0;
                m=l.get(0);
            }else{
                if(l.get(indexM)<l.get(indexM+1)){
                    m=l.get(indexM);
                    indexM=indexM;
                }else{
                    m=l.get(indexM+1);
                    indexM=indexM+1;
                }
            }
            min+=m;
        }
        return min;
    }
}



贪心不一定是最小的,只是相对最优的解法

官方

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        int[][] f = new int[n][n];
        f[0][0] = triangle.get(0).get(0);
        for (int i = 1; i < n; ++i) {
            f[i][0] = f[i - 1][0] + triangle.get(i).get(0);
            for (int j = 1; j < i; ++j) {
                f[i][j] = Math.min(f[i - 1][j - 1], f[i - 1][j]) + triangle.get(i).get(j);
            }
            f[i][i] = f[i - 1][i - 1] + triangle.get(i).get(i);
        }
        int minTotal = f[n - 1][0];
        for (int i = 1; i < n; ++i) {
            minTotal = Math.min(minTotal, f[n - 1][i]);
        }
        return minTotal;
    }
}

相关文章
|
3月前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
4月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
571 1
|
3月前
|
存储 算法
算法入门:专题一:双指针(有效三角形的个数)
给定一个数组,找出能组成三角形的三元组个数。利用“两边之和大于第三边”的性质,先排序,再用双指针优化。固定最大边,左右指针从区间两端向内移动,若两短边之和大于最长边,则中间所有组合均有效,时间复杂度由暴力的O(n³)降至O(n²)。
|
3月前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
6月前
|
机器学习/深度学习 数据采集 算法
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
135 0
|
11月前
|
存储 算法 Java
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
427 4
算法系列之动态规划
|
10月前
|
机器学习/深度学习 算法 机器人
强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
本文介绍了时间差分法(TD)中的两种经典算法:SARSA和Q-Learning。二者均为无模型强化学习方法,通过与环境交互估算动作价值函数。SARSA是On-Policy算法,采用ε-greedy策略进行动作选择和评估;而Q-Learning为Off-Policy算法,评估时选取下一状态中估值最大的动作。相比动态规划和蒙特卡洛方法,TD算法结合了自举更新与样本更新的优势,实现边行动边学习。文章通过生动的例子解释了两者的差异,并提供了伪代码帮助理解。
755 2
|
12月前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
420 5
|
11月前
|
算法 安全 调度
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
|
11月前
|
机器学习/深度学习 算法 测试技术
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”