使用LSH 进行特征提取

简介: 局部敏感哈希(LSH)通常用于近似最近邻算法(ANN) 操作(向量搜索)。LSH的特性也可以在以矢量为输入的神经网络模型中得到利用(例如,各种的音频、视频和文本嵌入等内容信号)。

局部敏感哈希(LSH)通常用于近似最近邻算法(ANN) 操作(向量搜索)。LSH的特性也可以在以矢量为输入的神经网络模型中得到利用(例如,各种的音频、视频和文本嵌入等内容信号)。

通常情况下,特定领域模型中输入的流形是复杂的(非i. i. d)。这种复杂性使得使用计算密集型操作的多层感知机来分离这些流形非常困难。学习复杂映射的经典方案是记忆结果,而不是学习函数。如何记忆向量图?最直接的方法就是嵌入向量。但是我们需要离散的对象来计算嵌入,而向量不是离散的。那么怎么把向量嵌入算法应用到向量输入中呢?对向量进行哈希运算,在哈希运算后,附近的点必须保持“附近”状态。这就是LSH的做法,所以我LSH运算顶部的嵌入可以作为浅层特征提取器。

"局部敏感哈希"(Locality Sensitive Hashing,简称LSH)是一种用于解决这类问题的近似搜索技术。它的主要思想是将相似的数据点映射到同一个"哈希"桶中,从而可以在特定的桶中进行搜索,而不必对整个数据集进行线性搜索。虽然这种方法不保证找到确切的最近邻,但它在高维数据中提供了一种高效的近似搜索方法。

LSH的核心概念如下:

  1. 局部敏感性函数(Locality Sensitive Function):这是一个函数,它能够将相似的数据点映射到相同的哈希桶中,但也不是那么严格,因此即使有些数据点被映射到相同的桶中,它们也不一定是真正相似的。局部敏感性函数的设计取决于所处理的数据类型和相似性度量。
  2. 哈希桶(Hash Bucket):数据点通过局部敏感性函数映射到不同的哈希桶中。相似的数据点可能被映射到相同的桶,从而提供了搜索的起点。
  3. 哈希表(Hash Table):哈希桶构成了一个哈希表,通过在哈希表中进行搜索,可以快速定位具有相似性的数据点。

LSH的性能取决于局部敏感性函数的设计和哈希桶的构建。这涉及到在保持相似性的同时,将数据点映射到不同的桶,以及在哈希表中组织和检索数据。LSH通常用于解决近似最近邻搜索(Approximate Nearest Neighbor Search,ANN)问题,其中目标是在给定查询点的情况下,找到与其相似度较高的数据点。

选择LSH算法和将LSH桶转换为嵌入的方式非常重要。所以这里只介绍一种只有方向感知的算法(忽略向量的大小),它基于这个简单的LSH算法:

 import torch
 import torch.nn as nn
 import torch.nn.functional as F


 class CosineVectorEmbedding(nn.Module):
     """
     LSH based vector indexer for highly non-linear ops
     """

     def __init__(self, inp_dim: int, emb_dim: int, n_proj: int = 16, num_bins: int = 20):
         super().__init__()
         self.register_buffer(
             'projection_mat',
             F.normalize(torch.randn((inp_dim, n_proj)), p=2.0, dim=0),
             persistent=True,
         )
         resolution = 2.0 / num_bins
         self.register_buffer(
             'grid',
             torch.linspace(-1, 1, num_bins + 1)[:-1] + 0.5 * resolution,
             persistent=True,
         )
         self.register_buffer(
             'pos_offset',
             ((num_bins + 1) * torch.arange(0, n_proj, dtype=torch.long)).long().reshape(-1, 1, 1),
             persistent=True
         )
         self.emb = nn.EmbeddingBag((num_bins + 1) * n_proj, emb_dim)
         self.emb_dim = emb_dim
         self.n_proj = n_proj

     def forward(self, x):
         bs, seq_len, emb_dim = x.size()
         z = F.normalize(x, p=2.0, dim=-1) @ self.projection_mat
         z = torch.bucketize(z, self.grid).transpose(0, -1)
         z = (z + self.pos_offset).transpose(0, -1).contiguous()
         return self.emb(z.view(-1, self.n_proj)).reshape(bs, seq_len, self.emb_dim)

为了说明它的有效性,我们将它应用到输入32维的输入内容嵌入的RecSys LLM的训练中。使用从低分辨率到高分辨率的独立级联LSH嵌入(inp_dim = 32,emb_dim = 512,n_proj = 32,num_bins =(1,2,4,8,12,16,20))并将其输出相加。把它与使用一个简单投影进行了对比(使用nn. Linear (32, 512))。

可以看到比简单的线性变换(当然参数更多,计算效率更高),我们的CosineVectorEmbedding是一个更好的特征提取器。

https://avoid.overfit.cn/post/2bab364a679f4b6f8d9a1c0bd3096b9b

作者:Dinesh Ramasamy

目录
相关文章
|
9月前
|
机器学习/深度学习 自然语言处理 数据可视化
深度探索变分自编码器在无监督特征学习中的应用
【4月更文挑战第20天】 在深度学习领域,无监督学习一直是研究的热点问题之一。本文聚焦于一种前沿的生成模型——变分自编码器(Variational Autoencoder, VAE),探讨其在无监督特征学习中的关键作用与应用潜力。不同于传统的摘要形式,本文将直接深入VAE的核心机制,分析其如何通过引入随机隐变量和重参数化技巧,实现对复杂数据分布的有效建模。文章还将展示VAE在多个实际数据集上的应用结果,验证其作为无监督特征提取工具的有效性和普适性。通过理论与实践的结合,本文旨在为读者提供关于VAE在无监督特征学习领域的全面认识。
106 2
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
VQ-VAE:矢量量化变分自编码器,离散化特征学习模型
VQ-VAE 是变分自编码器(VAE)的一种改进。这些模型可以用来学习有效的表示。本文将深入研究 VQ-VAE 之前,不过,在这之前我们先讨论一些概率基础和 VAE 架构。
224 10
|
6月前
|
机器学习/深度学习 算法 C语言
5.2.1 Backbone(特征提取) 5.2.2 Neck(多尺度检测)
这篇文章介绍了YOLOv3目标检测模型中的Backbone(特征提取)部分,详细阐述了使用Darknet53作为骨干网络来提取图像特征的方法,并通过代码示例展示了如何实现Darknet53网络结构以及如何查看不同层级输出特征图的形状,同时还讨论了Neck(多尺度检测)的概念,解释了如何通过特征图的尺寸放大和融合来实现对不同尺寸目标的检测。
|
8月前
|
机器学习/深度学习 算法 BI
图像处理之HOG特征提取
图像处理之HOG特征提取
227 0
|
9月前
|
机器学习/深度学习 存储 计算机视觉
特征提取
特征提取
104 3
|
机器学习/深度学习 算法 BI
图像处理HOG特征提取
简要介绍hog特征提取的原理和python代码实现。
150 0
|
机器学习/深度学习 传感器 算法
【CNN时序预测】基于混合卷积神经网络和循环神经网络 CNN - RNN 实现时间序列预测附Matlab代码
【CNN时序预测】基于混合卷积神经网络和循环神经网络 CNN - RNN 实现时间序列预测附Matlab代码
|
机器学习/深度学习 人工智能 算法
|
机器学习/深度学习 存储 算法
表情识别FER | 局部特征学习和Handcrafted特征结合
作者的BOVW模型,分测试和训练两个阶段。在训练阶段,作者对所有训练图片,提取了稠密SIFT特征,然后用K-mean聚类的方式,量化这些描述子,成为visual word(VW),视觉词汇,个人认为主要是针对bag这种投票集成算法,针对视觉图像定义的。这些VW存储在k-d树形成的随机森林里以减少搜索代价。在建立好词汇表后,训练和测试等价,意思就是训练和测试没有之前离线分类那种明显的区分了,后面有用到KNN,所以,训练和测试没有明显区分。
表情识别FER | 局部特征学习和Handcrafted特征结合
|
机器学习/深度学习 算法 数据可视化
特征工程系列之非线性特征提取和模型堆叠
特征工程系列之非线性特征提取和模型堆叠
特征工程系列之非线性特征提取和模型堆叠

热门文章

最新文章

相关实验场景

更多