(七)解析Streamlit的数据元素:探索st.dataframe、st.data_editor、st.column_config、st.table、st.metric和st.json的神奇之处(中)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: (七)解析Streamlit的数据元素:探索st.dataframe、st.data_editor、st.column_config、st.table、st.metric和st.json的神奇之处

4.3 使用 st.column_config.NumberColumn 定制数据编辑器的数字列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "price": [20, 950, 250, 500],
    }
)
st.data_editor(
    data_df,
    column_config={
        "price": st.column_config.NumberColumn(
            "Price (in USD)",
            help="The price of the product in USD",
            min_value=0,
            max_value=1000,
            step=1,
            format="$%d",
        )
    },
    hide_index=True,
)

在本节中,我们将介绍如何使用 st.column_config.NumberColumn 来定制数据编辑器的数字列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “price” 的列,存储了一些产品的价格。


然后,使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “price” 列使用了 st.column_config.NumberColumn 进行定制。


我们为 “price” 列创建了一个 st.column_config.NumberColumn 对象,并指定了以下参数:


title:设置列的标题为 “Price (in USD)”。

help:提供帮助文本,说明该列存储的是产品的美元价格。

min_value:设置最小值为 0,限制输入值不能小于 0。

max_value:设置最大值为 1000,限制输入值不能大于 1000。

step:设置步长为 1,控制数字输入的增减间隔。

format:我们使用 “$%d” 的格式来显示价格,让输入值自动前面添加美元符号。

通过使用 st.column_config.NumberColumn,我们可以对数字列进行更精细的控制和格式化。可以设置标题、帮助文本、最小值、最大值、步长和显示格式,以确保用户提供有效的数字输入。


使用定制的数字列,我们可以更好地管理和处理与数字相关的数据,增强数据编辑器的功能和用户体验。


4.4 使用 st.column_config.CheckboxColumn 定制数据编辑器的复选框列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "widgets": ["st.selectbox", "st.number_input", "st.text_area", "st.button"],
        "favorite": [True, False, False, True],
    }
)
st.data_editor(
    data_df,
    column_config={
        "favorite": st.column_config.CheckboxColumn(
            "Your favorite?",
            help="Select your **favorite** widgets",
            default=False,
        )
    },
    disabled=["widgets"],
    hide_index=True,
)

在本节中,我们将介绍如何使用 st.column_config.CheckboxColumn 来定制数据编辑器的复选框列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含两列:一个名为 “widgets”,存储了几个 Streamlit 的小部件命令;另一个名为 “favorite”,存储了用户对小部件的喜好情况。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “favorite” 列使用了 st.column_config.CheckboxColumn 进行定制。


我们为 “favorite” 列创建了一个 st.column_config.CheckboxColumn 对象,并指定了以下参数:


title:设置列的标题为 “Your favorite?”。

help:提供帮助文本,以解释该列是关于用户对小部件的喜好情况的选择复选框。

default:设置默认值为 False,即未选中复选框。

通过使用 st.column_config.CheckboxColumn,我们可以对复选框列进行定制和控制。可以设置标题、帮助文本和默认值,以提供更好的用户体验和数据交互性。


注意,我们还通过将 “widgets” 列添加到 disabled 参数中来禁用了该列的编辑。这样,用户将无法编辑 “widgets” 列的值。


使用定制的复选框列,我们可以更好地了解用户对特定选项的喜好与意见。这在收集用户反馈、偏好调查等场景中非常有用。


4.5 使用 st.column_config.SelectboxColumn 定制数据编辑器的下拉框列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "category": [
            "📊 Data Exploration",
            "📈 Data Visualization",
            "🤖 LLM",
            "📊 Data Exploration",
        ],
    }
)
st.data_editor(
    data_df,
    column_config={
        "category": st.column_config.SelectboxColumn(
            "App Category",
            help="The category of the app",
            width="medium",
            options=[
                "📊 Data Exploration",
                "📈 Data Visualization",
                "🤖 LLM",
            ],
        )
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.SelectboxColumn 来定制数据编辑器的下拉框列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “category” 的列,存储了应用的分类信息。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “category” 列使用了 st.column_config.SelectboxColumn 进行定制。


我们为 “category” 列创建了一个 st.column_config.SelectboxColumn 对象,并指定了以下参数:


title:设置列的标题为 “App Category”。

help:提供帮助文本,解释该列是关于应用分类的下拉框。

width:设置下拉框的宽度为 “medium”,使其具有中等宽度。

options:设置下拉框的选项为 [“📊 Data Exploration”, “📈 Data Visualization”,

“🤖 LLM”],即用户可以从这些选项中选择。

通过使用 st.column_config.SelectboxColumn,我们可以对下拉框列进行定制和控制。可以设置标题、帮助文本、宽度和选项,以便用户能够从预定义的选项中进行选择。


在数据编辑器中使用定制的下拉框列,可以提供更好的数据交互性和用户体验,尤其对于需要从特定选项中选择的数据字段来说。


4.6 使用 st.column_config.DatetimeColumn 定制数据编辑器的日期时间列


from datetime import datetime
import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "appointment": [
            datetime(2024, 2, 5, 12, 30),
            datetime(2023, 11, 10, 18, 0),
            datetime(2024, 3, 11, 20, 10),
            datetime(2023, 9, 12, 3, 0),
        ]
    }
)
st.data_editor(
    data_df,
    column_config={
        "appointment": st.column_config.DatetimeColumn(
            "Appointment",
            min_value=datetime(2023, 6, 1),
            max_value=datetime(2025, 1, 1),
            format="D MMM YYYY, h:mm a",
            step=60,
        ),
    },
    hide_index=True,
)

在本节中,我们将介绍如何使用 st.column_config.DatetimeColumn 来定制数据编辑器的日期时间列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “appointment” 的列,存储了预约的日期和时间。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “appointment” 列使用了 st.column_config.DatetimeColumn 进行定制。


我们为 “appointment” 列创建了一个 st.column_config.DatetimeColumn 对象,并指定了以下参数:


title:设置列的标题为 “Appointment”。

min_value:设置最小日期时间为 datetime(2023, 6, 1),即2023年6月1日之后的日期时间可选择。

max_value:设置最大日期时间为 datetime(2025, 1, 1),即2025年1月1日之前的日期时间可选择。

format:设置日期时间的显示格式为 “D MMM YYYY, h:mm a”,例如 “5 Feb 2024, 12:30 PM”。

step:设置步长为 60 分钟,即每次改变日期时间时以 60 分钟为单位递增或递减。

通过使用 st.column_config.DatetimeColumn,我们可以对日期时间列进行定制和控制。可以设置标题、最小和最大日期时间、显示格式和步长,以便用户能够在指定的范围内选择合适的日期时间。


在数据编辑器中使用定制的日期时间列,可以方便地进行日期时间的选择和编辑,适用于需要与日期时间相关的数据字段。


4.7 使用 st.column_config.DateColumn 定制数据编辑器的日期列


from datetime import date
import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "birthday": [
            date(1980, 1, 1),
            date(1990, 5, 3),
            date(1974, 5, 19),
            date(2001, 8, 17),
        ]
    }
)
st.data_editor(
    data_df,
    column_config={
        "birthday": st.column_config.DateColumn(
            "Birthday",
            min_value=date(1900, 1, 1),
            max_value=date(2005, 1, 1),
            format="DD.MM.YYYY",
            step=1,
        ),
    },
    hide_index=True,
)



在本节中,我们将介绍如何使用 st.column_config.DateColumn 来定制数据编辑器的日期列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “birthday” 的列,存储了生日信息。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “birthday” 列使用了 st.column_config.DateColumn 进行定制。


我们为 “birthday” 列创建了一个 st.column_config.DateColumn 对象,并指定了以下参数:


title:设置列的标题为 “Birthday”。

min_value:设置最小日期为 date(1900, 1, 1),即1900年1月1日之后的日期可选择。

max_value:设置最大日期为 date(2005, 1, 1),即2005年1月1日之前的日期可选择。

format:设置日期的显示格式为 “DD.MM.YYYY”,例如 “01.01.1980”。

step:设置步长为 1 天,即每次改变日期时以 1 天为单位递增或递减。

通过使用 st.column_config.DateColumn,我们可以对日期列进行定制和控制。可以设置标题、最小和最大日期、显示格式和步长,以便用户能够在指定的范围内选择合适的日期。


在数据编辑器中使用定制的日期列,可以方便地进行日期的选择和编辑,适用于需要与日期相关的数据字段。


4.8 使用 st.column_config.TimeColumn 定制数据编辑器的时间列


from datetime import time
import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "appointment": [
            time(12, 30),
            time(18, 0),
            time(9, 10),
            time(16, 25),
        ]
    }
)
st.data_editor(
    data_df,
    column_config={
        "appointment": st.column_config.TimeColumn(
            "Appointment",
            min_value=time(8, 0, 0),
            max_value=time(19, 0, 0),
            format="hh:mm a",
            step=60,
        ),
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.TimeColumn 来定制数据编辑器的时间列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “appointment” 的列,存储了预约的时间信息。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “appointment” 列使用了 st.column_config.TimeColumn 进行定制。


我们为 “appointment” 列创建了一个 st.column_config.TimeColumn 对象,并指定了以下参数:


title:设置列的标题为 “Appointment”。

min_value:设置最小时间为 time(8, 0, 0),即每天从早上8点之后的时间可选择。

max_value:设置最大时间为 time(19, 0, 0),即每天到晚上7点之前的时间可选择。

format:设置时间的显示格式为 “hh:mm a”,例如 “12:30 PM”。

step:设置步长为 60 分钟,即每次改变时间时以 60 分钟为单位递增或递减。

通过使用 st.column_config.TimeColumn,我们可以对时间列进行定制和控制。可以设置标题、最小和最大时间、显示格式和步长,以便用户能够在指定的范围内选择合适的时间。


在数据编辑器中使用定制的时间列,可以方便地进行时间的选择和编辑,适用于需要与时间相关的数据字段。


4.9 使用 st.column_config.ListColumn 定制数据编辑器的列表列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "sales": [
            [0, 4, 26, 80, 100, 40],
            [80, 20, 80, 35, 40, 100],
            [10, 20, 80, 80, 70, 0],
            [10, 100, 20, 100, 30, 100],
        ],
    }
)
st.data_editor(
    data_df,
    column_config={
        "sales": st.column_config.ListColumn(
            "Sales (last 6 months)",
            help="The sales volume in the last 6 months",
            width="medium",
        ),
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.ListColumn 来定制数据编辑器的列表列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “sales” 的列,存储了过去6个月的销售数据。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “sales” 列使用了 st.column_config.ListColumn 进行定制。


我们为 “sales” 列创建了一个 st.column_config.ListColumn 对象,并指定了以下参数:


title:设置列的标题为 “Sales (last 6 months)”。

help:提供对该列的帮助信息,为 “The sales volume in the last 6 months”。

width:设置列的宽度为 “medium”。

通过使用 st.column_config.ListColumn,我们可以对列表列进行定制和控制。可以设置标题、帮助信息和列宽度,以便用户能够更好地了解和操作列表列的数据。


在数据编辑器中使用定制的列表列,可以方便地查看和编辑列表数据,适用于需要存储和处理多个值的数据字段。


4.10 使用 st.column_config.LinkColumn 定制数据编辑器的链接列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "apps": [
            "https://roadmap.streamlit.app",
            "https://extras.streamlit.app",
            "https://issues.streamlit.app",
            "https://30days.streamlit.app",
        ],
    }
)
st.data_editor(
    data_df,
    column_config={
        "apps": st.column_config.LinkColumn(
            "Trending apps",
            help="The top trending Streamlit apps",
            validate="^https://[a-z]+\.streamlit\.app$",
            max_chars=100,
        )
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.LinkColumn 来定制数据编辑器的链接列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “apps” 的列,存储了不同的 Streamlit 应用链接。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “apps” 列使用了 st.column_config.LinkColumn 进行定制。


我们为 “apps” 列创建了一个 st.column_config.LinkColumn 对象,并指定了以下参数:


title:设置列的标题为 “Trending apps”。

help:提供对该列的帮助信息,为 “The top trending Streamlit apps”。

validate:设置正则表达式模式,用于验证链接的格式,该模式为

“^https://[a-z]+.streamlit.app$”,表示链接必须以 “https://” 开头,以

“.streamlit.app” 结尾,并且中间部分只能包含小写字母。

max_chars:设置链接显示的最大字符数为 100。

通过使用 st.column_config.LinkColumn,我们可以对链接列进行定制和控制。可以设置标题、帮助信息、验证格式和显示的最大字符数,以便用户能够更好地理解和操作链接列的数据。


在数据编辑器中使用定制的链接列,可以方便地点击链接查看相关内容,适用于需要存储和展示链接数据的字段。

相关文章
|
11天前
|
数据采集 Web App开发 JavaScript
DOMParser解析TikTok页面中的图片元素
DOMParser解析TikTok页面中的图片元素
|
27天前
|
存储 搜索推荐 大数据
数据大爆炸:解析大数据的起源及其对未来的启示
数据大爆炸:解析大数据的起源及其对未来的启示
92 15
数据大爆炸:解析大数据的起源及其对未来的启示
|
8天前
|
数据采集 前端开发 API
SurfGen爬虫:解析HTML与提取关键数据
SurfGen爬虫:解析HTML与提取关键数据
|
13天前
|
数据采集 监控 搜索推荐
深度解析淘宝商品详情API接口:解锁电商数据新维度,驱动业务增长
淘宝商品详情API接口,是淘宝开放平台为第三方开发者提供的一套用于获取淘宝、天猫等电商平台商品详细信息的应用程序接口。该接口涵盖了商品的基本信息(如标题、价格、图片)、属性参数、库存状况、销量评价、物流信息等,是电商企业实现商品管理、市场分析、营销策略制定等功能的得力助手。
|
1月前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
30天前
|
JSON 小程序 UED
微信小程序 app.json 配置文件解析与应用
本文介绍了微信小程序中 `app.json` 配置文件的详细
138 12
|
30天前
|
JSON 缓存 API
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
39 12
|
23天前
|
搜索推荐 API 开发者
深度解析:利用商品详情 API 接口实现数据获取与应用
在电商蓬勃发展的今天,数据成为驱动业务增长的核心。商品详情API接口作为连接海量商品数据的桥梁,帮助运营者、商家和开发者获取精准的商品信息(如价格、描述、图片、评价等),优化策略、提升用户体验。通过理解API概念、工作原理及不同平台特点,掌握获取权限、构建请求、处理响应和错误的方法,可以将数据应用于商品展示、数据分析、竞品分析和个性化推荐等场景,助力电商创新与发展。未来,随着技术进步,API接口将与人工智能、大数据深度融合,带来更多变革。
62 3
|
1月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
50 7
|
3月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
133 2

推荐镜像

更多