(七)解析Streamlit的数据元素:探索st.dataframe、st.data_editor、st.column_config、st.table、st.metric和st.json的神奇之处(中)

简介: (七)解析Streamlit的数据元素:探索st.dataframe、st.data_editor、st.column_config、st.table、st.metric和st.json的神奇之处

4.3 使用 st.column_config.NumberColumn 定制数据编辑器的数字列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "price": [20, 950, 250, 500],
    }
)
st.data_editor(
    data_df,
    column_config={
        "price": st.column_config.NumberColumn(
            "Price (in USD)",
            help="The price of the product in USD",
            min_value=0,
            max_value=1000,
            step=1,
            format="$%d",
        )
    },
    hide_index=True,
)

在本节中,我们将介绍如何使用 st.column_config.NumberColumn 来定制数据编辑器的数字列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “price” 的列,存储了一些产品的价格。


然后,使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “price” 列使用了 st.column_config.NumberColumn 进行定制。


我们为 “price” 列创建了一个 st.column_config.NumberColumn 对象,并指定了以下参数:


title:设置列的标题为 “Price (in USD)”。

help:提供帮助文本,说明该列存储的是产品的美元价格。

min_value:设置最小值为 0,限制输入值不能小于 0。

max_value:设置最大值为 1000,限制输入值不能大于 1000。

step:设置步长为 1,控制数字输入的增减间隔。

format:我们使用 “$%d” 的格式来显示价格,让输入值自动前面添加美元符号。

通过使用 st.column_config.NumberColumn,我们可以对数字列进行更精细的控制和格式化。可以设置标题、帮助文本、最小值、最大值、步长和显示格式,以确保用户提供有效的数字输入。


使用定制的数字列,我们可以更好地管理和处理与数字相关的数据,增强数据编辑器的功能和用户体验。


4.4 使用 st.column_config.CheckboxColumn 定制数据编辑器的复选框列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "widgets": ["st.selectbox", "st.number_input", "st.text_area", "st.button"],
        "favorite": [True, False, False, True],
    }
)
st.data_editor(
    data_df,
    column_config={
        "favorite": st.column_config.CheckboxColumn(
            "Your favorite?",
            help="Select your **favorite** widgets",
            default=False,
        )
    },
    disabled=["widgets"],
    hide_index=True,
)

在本节中,我们将介绍如何使用 st.column_config.CheckboxColumn 来定制数据编辑器的复选框列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含两列:一个名为 “widgets”,存储了几个 Streamlit 的小部件命令;另一个名为 “favorite”,存储了用户对小部件的喜好情况。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “favorite” 列使用了 st.column_config.CheckboxColumn 进行定制。


我们为 “favorite” 列创建了一个 st.column_config.CheckboxColumn 对象,并指定了以下参数:


title:设置列的标题为 “Your favorite?”。

help:提供帮助文本,以解释该列是关于用户对小部件的喜好情况的选择复选框。

default:设置默认值为 False,即未选中复选框。

通过使用 st.column_config.CheckboxColumn,我们可以对复选框列进行定制和控制。可以设置标题、帮助文本和默认值,以提供更好的用户体验和数据交互性。


注意,我们还通过将 “widgets” 列添加到 disabled 参数中来禁用了该列的编辑。这样,用户将无法编辑 “widgets” 列的值。


使用定制的复选框列,我们可以更好地了解用户对特定选项的喜好与意见。这在收集用户反馈、偏好调查等场景中非常有用。


4.5 使用 st.column_config.SelectboxColumn 定制数据编辑器的下拉框列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "category": [
            "📊 Data Exploration",
            "📈 Data Visualization",
            "🤖 LLM",
            "📊 Data Exploration",
        ],
    }
)
st.data_editor(
    data_df,
    column_config={
        "category": st.column_config.SelectboxColumn(
            "App Category",
            help="The category of the app",
            width="medium",
            options=[
                "📊 Data Exploration",
                "📈 Data Visualization",
                "🤖 LLM",
            ],
        )
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.SelectboxColumn 来定制数据编辑器的下拉框列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “category” 的列,存储了应用的分类信息。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “category” 列使用了 st.column_config.SelectboxColumn 进行定制。


我们为 “category” 列创建了一个 st.column_config.SelectboxColumn 对象,并指定了以下参数:


title:设置列的标题为 “App Category”。

help:提供帮助文本,解释该列是关于应用分类的下拉框。

width:设置下拉框的宽度为 “medium”,使其具有中等宽度。

options:设置下拉框的选项为 [“📊 Data Exploration”, “📈 Data Visualization”,

“🤖 LLM”],即用户可以从这些选项中选择。

通过使用 st.column_config.SelectboxColumn,我们可以对下拉框列进行定制和控制。可以设置标题、帮助文本、宽度和选项,以便用户能够从预定义的选项中进行选择。


在数据编辑器中使用定制的下拉框列,可以提供更好的数据交互性和用户体验,尤其对于需要从特定选项中选择的数据字段来说。


4.6 使用 st.column_config.DatetimeColumn 定制数据编辑器的日期时间列


from datetime import datetime
import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "appointment": [
            datetime(2024, 2, 5, 12, 30),
            datetime(2023, 11, 10, 18, 0),
            datetime(2024, 3, 11, 20, 10),
            datetime(2023, 9, 12, 3, 0),
        ]
    }
)
st.data_editor(
    data_df,
    column_config={
        "appointment": st.column_config.DatetimeColumn(
            "Appointment",
            min_value=datetime(2023, 6, 1),
            max_value=datetime(2025, 1, 1),
            format="D MMM YYYY, h:mm a",
            step=60,
        ),
    },
    hide_index=True,
)

在本节中,我们将介绍如何使用 st.column_config.DatetimeColumn 来定制数据编辑器的日期时间列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “appointment” 的列,存储了预约的日期和时间。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “appointment” 列使用了 st.column_config.DatetimeColumn 进行定制。


我们为 “appointment” 列创建了一个 st.column_config.DatetimeColumn 对象,并指定了以下参数:


title:设置列的标题为 “Appointment”。

min_value:设置最小日期时间为 datetime(2023, 6, 1),即2023年6月1日之后的日期时间可选择。

max_value:设置最大日期时间为 datetime(2025, 1, 1),即2025年1月1日之前的日期时间可选择。

format:设置日期时间的显示格式为 “D MMM YYYY, h:mm a”,例如 “5 Feb 2024, 12:30 PM”。

step:设置步长为 60 分钟,即每次改变日期时间时以 60 分钟为单位递增或递减。

通过使用 st.column_config.DatetimeColumn,我们可以对日期时间列进行定制和控制。可以设置标题、最小和最大日期时间、显示格式和步长,以便用户能够在指定的范围内选择合适的日期时间。


在数据编辑器中使用定制的日期时间列,可以方便地进行日期时间的选择和编辑,适用于需要与日期时间相关的数据字段。


4.7 使用 st.column_config.DateColumn 定制数据编辑器的日期列


from datetime import date
import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "birthday": [
            date(1980, 1, 1),
            date(1990, 5, 3),
            date(1974, 5, 19),
            date(2001, 8, 17),
        ]
    }
)
st.data_editor(
    data_df,
    column_config={
        "birthday": st.column_config.DateColumn(
            "Birthday",
            min_value=date(1900, 1, 1),
            max_value=date(2005, 1, 1),
            format="DD.MM.YYYY",
            step=1,
        ),
    },
    hide_index=True,
)



在本节中,我们将介绍如何使用 st.column_config.DateColumn 来定制数据编辑器的日期列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “birthday” 的列,存储了生日信息。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “birthday” 列使用了 st.column_config.DateColumn 进行定制。


我们为 “birthday” 列创建了一个 st.column_config.DateColumn 对象,并指定了以下参数:


title:设置列的标题为 “Birthday”。

min_value:设置最小日期为 date(1900, 1, 1),即1900年1月1日之后的日期可选择。

max_value:设置最大日期为 date(2005, 1, 1),即2005年1月1日之前的日期可选择。

format:设置日期的显示格式为 “DD.MM.YYYY”,例如 “01.01.1980”。

step:设置步长为 1 天,即每次改变日期时以 1 天为单位递增或递减。

通过使用 st.column_config.DateColumn,我们可以对日期列进行定制和控制。可以设置标题、最小和最大日期、显示格式和步长,以便用户能够在指定的范围内选择合适的日期。


在数据编辑器中使用定制的日期列,可以方便地进行日期的选择和编辑,适用于需要与日期相关的数据字段。


4.8 使用 st.column_config.TimeColumn 定制数据编辑器的时间列


from datetime import time
import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "appointment": [
            time(12, 30),
            time(18, 0),
            time(9, 10),
            time(16, 25),
        ]
    }
)
st.data_editor(
    data_df,
    column_config={
        "appointment": st.column_config.TimeColumn(
            "Appointment",
            min_value=time(8, 0, 0),
            max_value=time(19, 0, 0),
            format="hh:mm a",
            step=60,
        ),
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.TimeColumn 来定制数据编辑器的时间列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “appointment” 的列,存储了预约的时间信息。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “appointment” 列使用了 st.column_config.TimeColumn 进行定制。


我们为 “appointment” 列创建了一个 st.column_config.TimeColumn 对象,并指定了以下参数:


title:设置列的标题为 “Appointment”。

min_value:设置最小时间为 time(8, 0, 0),即每天从早上8点之后的时间可选择。

max_value:设置最大时间为 time(19, 0, 0),即每天到晚上7点之前的时间可选择。

format:设置时间的显示格式为 “hh:mm a”,例如 “12:30 PM”。

step:设置步长为 60 分钟,即每次改变时间时以 60 分钟为单位递增或递减。

通过使用 st.column_config.TimeColumn,我们可以对时间列进行定制和控制。可以设置标题、最小和最大时间、显示格式和步长,以便用户能够在指定的范围内选择合适的时间。


在数据编辑器中使用定制的时间列,可以方便地进行时间的选择和编辑,适用于需要与时间相关的数据字段。


4.9 使用 st.column_config.ListColumn 定制数据编辑器的列表列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "sales": [
            [0, 4, 26, 80, 100, 40],
            [80, 20, 80, 35, 40, 100],
            [10, 20, 80, 80, 70, 0],
            [10, 100, 20, 100, 30, 100],
        ],
    }
)
st.data_editor(
    data_df,
    column_config={
        "sales": st.column_config.ListColumn(
            "Sales (last 6 months)",
            help="The sales volume in the last 6 months",
            width="medium",
        ),
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.ListColumn 来定制数据编辑器的列表列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “sales” 的列,存储了过去6个月的销售数据。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “sales” 列使用了 st.column_config.ListColumn 进行定制。


我们为 “sales” 列创建了一个 st.column_config.ListColumn 对象,并指定了以下参数:


title:设置列的标题为 “Sales (last 6 months)”。

help:提供对该列的帮助信息,为 “The sales volume in the last 6 months”。

width:设置列的宽度为 “medium”。

通过使用 st.column_config.ListColumn,我们可以对列表列进行定制和控制。可以设置标题、帮助信息和列宽度,以便用户能够更好地了解和操作列表列的数据。


在数据编辑器中使用定制的列表列,可以方便地查看和编辑列表数据,适用于需要存储和处理多个值的数据字段。


4.10 使用 st.column_config.LinkColumn 定制数据编辑器的链接列


import pandas as pd
import streamlit as st
data_df = pd.DataFrame(
    {
        "apps": [
            "https://roadmap.streamlit.app",
            "https://extras.streamlit.app",
            "https://issues.streamlit.app",
            "https://30days.streamlit.app",
        ],
    }
)
st.data_editor(
    data_df,
    column_config={
        "apps": st.column_config.LinkColumn(
            "Trending apps",
            help="The top trending Streamlit apps",
            validate="^https://[a-z]+\.streamlit\.app$",
            max_chars=100,
        )
    },
    hide_index=True,
)


在本节中,我们将介绍如何使用 st.column_config.LinkColumn 来定制数据编辑器的链接列。


在上述示例中,我们创建了一个名为 data_df 的数据框,其中包含一个名为 “apps” 的列,存储了不同的 Streamlit 应用链接。


然后,我们使用 st.data_editor 来展示可编辑的数据框,并通过 column_config 参数对列进行定制。这次我们针对 “apps” 列使用了 st.column_config.LinkColumn 进行定制。


我们为 “apps” 列创建了一个 st.column_config.LinkColumn 对象,并指定了以下参数:


title:设置列的标题为 “Trending apps”。

help:提供对该列的帮助信息,为 “The top trending Streamlit apps”。

validate:设置正则表达式模式,用于验证链接的格式,该模式为

“^https://[a-z]+.streamlit.app$”,表示链接必须以 “https://” 开头,以

“.streamlit.app” 结尾,并且中间部分只能包含小写字母。

max_chars:设置链接显示的最大字符数为 100。

通过使用 st.column_config.LinkColumn,我们可以对链接列进行定制和控制。可以设置标题、帮助信息、验证格式和显示的最大字符数,以便用户能够更好地理解和操作链接列的数据。


在数据编辑器中使用定制的链接列,可以方便地点击链接查看相关内容,适用于需要存储和展示链接数据的字段。

相关文章
|
1月前
|
JSON API 数据格式
淘宝拍立淘按图搜索API系列,json数据返回
淘宝拍立淘按图搜索API系列通过图像识别技术实现商品搜索功能,调用后返回的JSON数据包含商品标题、图片链接、价格、销量、相似度评分等核心字段,支持分页和详细商品信息展示。以下是该API接口返回的JSON数据示例及详细解析:
|
1月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
2月前
|
JSON 缓存 自然语言处理
多语言实时数据微店商品详情API:技术实现与JSON数据解析指南
通过以上技术实现与解析指南,开发者可高效构建支持多语言的实时商品详情系统,满足全球化电商场景需求。
|
1月前
|
JSON 中间件 Java
【GoGin】(3)Gin的数据渲染和中间件的使用:数据渲染、返回JSON、浅.JSON()源码、中间件、Next()方法
我们在正常注册中间件时,会打断原有的运行流程,但是你可以在中间件函数内部添加Next()方法,这样可以让原有的运行流程继续执行,当原有的运行流程结束后再回来执行中间件内部的内容。​ c.Writer.WriteHeaderNow()还会写入文本流中。可以看到使用next后,正常执行流程中并没有获得到中间件设置的值。接口还提供了一个可以修改ContentType的方法。判断了传入的状态码是否符合正确的状态码,并返回。在内部封装时,只是标注了不同的render类型。再看一下其他返回的类型;
155 3
|
1月前
|
JSON Java Go
【GoGin】(2)数据解析和绑定:结构体分析,包括JSON解析、form解析、URL解析,区分绑定的Bind方法
bind或bindXXX函数(后文中我们统一都叫bind函数)的作用就是将,以方便后续业务逻辑的处理。
261 3
|
1月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
157 0
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
2月前
|
JSON 自然语言处理 监控
淘宝关键词搜索与商品详情API接口(JSON数据返回)
通过商品ID(num_iid)获取商品全量信息,包括SKU规格、库存、促销活动、卖家信息、详情页HTML等。
|
2月前
|
JSON 自然语言处理 API
多语言实时数据淘宝商品评论API:技术实现与JSON数据解析指南
淘宝商品评论多语言实时采集需结合官方API与后处理技术实现。建议优先通过地域站点适配获取本地化评论,辅以机器翻译完成多语言转换。在合规前提下,企业可构建多语言评论数据库,支撑全球化市场分析与产品优化。

推荐镜像

更多
  • DNS