多目标遗传算法NSGAII求解环境经济调度(Python代码实现)

简介: 多目标遗传算法NSGAII求解环境经济调度(Python代码实现)

1 电力系统环境经济调度数学模型


2 算例——IEEE10节点

2.1 数据

我弄成一个表格,方便编程读写:


2.2 Python代码学习

多目标遗传算法NSGAII在电力系统多目标问题有广泛的应用,只要把文中的目标函数和约束条件换了,就搞定啦。

部分代码:

#========导入第三方库=============
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
import matplotlib;
matplotlib.use('TkAgg')
from tqdm import tqdm  # 进度条设置
# ========导入数据=============
# ~~~~~~~~~~~~~~~~~~~~~读取文件~~~~~~~~~~~~~~~~~~~~~~
file=pd.read_csv('IEEE10.csv')#机组参数
#B=pd.read_csv('B10.csv')
#B=np.reshape()
B=np.array([[0.000049, 0.000014 ,0.000015,  0.000015, 0.000016, 0.000017  ,0.000017,  0.000018  ,0.000019,  0.00002],
[0.000014,  0.000045, 0.000016, 0.000016, 0.000017  ,0.000015,  0.000015  ,0.000016 ,0.000018,  0.000018],
[0.000015,  0.000016, 0.000039, 0.00001 ,0.000012,  0.000012  ,0.000014,  0.000014, 0.000016, 0.000016],
[0.000015,  0.000016, 0.00001,  0.00004,  0.000014  ,0.00001  ,0.000011,  0.000012, 0.000014, 0.000015],
[0.000016,  0.000017, 0.000012, 0.000014, 0.000035, 0.000011, 0.000013, 0.000013, 0.000015, 0.000016],
[0.000017,  0.000015, 0.000012, 0.00001,  0.000011  ,0.000036,  0.000012, 0.000012, 0.000014, 0.000015],
[0.000017 ,0.000015 ,0.000014,  0.000011, 0.000013, 0.000012, 0.000038, 0.000016, 0.000016, 0.000018],
[0.000018 ,0.000016,  0.000014, 0.000012, 0.000013, 0.000012, 0.000016  ,0.00004, 0.000015, 0.000016],
[0.000019 ,0.000018 ,0.000016,  0.000014, 0.000015  ,0.000014 ,0.000016,  0.000015, 0.000042  ,0.000019],
[0.00002, 0.000018  ,0.000016 ,0.000015,  0.000016, 0.000015, 0.000018  ,0.000016,  0.000019  ,0.000044]])
P_max = file['b']  #机组上限
P_min = file['c']  # #机组下限
# ~~~~~~~~~~~~~~~~~机组特性系数~~~~~~~~~~~~~~~~~~~~~~~~·
ai = file['d']
bi=file['e']
ci=file['f']
di=file['g']
ei=file['h']
# ~~~~~~~排放特性系数~~~~~~~~~~~~~~~~·
ali=file['g']
beti=file['h']
gari=file['i']
eti=file['l']
dali=file['m']
# ======多目标优化算法一次 只能求解单个时刻的解===============
class GaMultiobjective(object):
    def __init__(self, Pload1, P_max, P_min, ai, bi, ci, di, ei, ali, beti, gari, eti, dali):
        self.Pload1 = Pload1  # 负荷
        self.P_max = P_max  # 机组上限
        self.P_min = P_min  # 机组下限
        self.ai = ai
        self.bi = bi
        self.ci = ci
        self.di = di
        self.ei = ei
        self.ali = ali
        self.beti = beti
        self.gari = gari
        self.eti = eti
        self.dali = dali
    # ===初始化种群====
    def Initialize(self):
        X = np.zeros((self.NP, 10))  # 初始化群体,10代表 个机组出力
        for n in range(self.NP):  # 遍历每一个粒子
            X[n, 0] = np.random.uniform(10, 55, 1)[0]  # G1
            X[n, 1] = np.random.uniform(20, 80, 1)[0]  # G2
            X[n, 2] = np.random.uniform(47, 120, 1)[0]  # G3
            X[n, 3] = np.random.uniform(20, 130, 1)[0]  # G4
            X[n, 4] = np.random.uniform(50, 160, 1)[0]  # G5
            X[n, 5] = np.random.uniform(70, 240, 1)[0]  # G6
            X[n, 6] = np.random.uniform(60, 300, 1)[0]  # G7
            X[n, 7] = np.random.uniform(70, 340, 1)[0]  # G8
            X[n, 8] = np.random.uniform(130, 470, 1)[0]  # G9
            X[n, 9] = np.random.uniform(150, 470, 1)[0]  # G10
        return X
    # ==========定义目标函数、和对应的惩罚项=============
    # ===定义函数1 目标函数1:系统运行成本===
    def function1(self, X1):
        """
        个体目标函数
        :param X1:  (个体[G1,G2,G3,G4,G5,G6,G7,G8,G9,G10]
        :return: 函数1目标函数值
        """
        SUMCOST = []  # 存储总的成本
        for i in range (9):  # 遍历每一台机组,Python是从0开始索引,0-9:10台机组
            cost = self.ci[i] * X1[i] * X1[i] + self.bi[i]* X1[i] +self.ai[i]+\
                   np.abs(self.di[i]*np.sin(ei[i]*(self.P_min[i]-X1[i]))) #考虑阀点效应
            SUMCOST.append(cost)
        return np.sum(SUMCOST)
    # ====定义函数2 总污染排放量====
    def function2(self, X1):
        """
        个体目标函数
        :param X1:  (个体[G1,G2,G3,G4,G5,G6,G7,G8,G9,G10]
        :return: 函数2目标函数值
        """
        emission=[] #储存总的污染排放量
        for i in range(9):
            e=self.ali[i]+self.beti[i]*X1[i]+self.gari[i]*X1[i]*X1[i]+self.eti[i]*np.exp(self.dali[i]*X1[i])
            emission.append(e)
        return np.sum(emission)
    # ===对应的约束  负荷平衡约束(本例子calc_e() 不起作用,已通过其它方法解决掉负荷平衡约束)===
    def calc_e(self, X1):
        """
    函数1 对应的个体惩罚项
    :param X1: (个体[G1,G2,G3,G4,G5,G6,G7,G8,G9,G10]
    :return:
    """
        Ploss=0
        for i in range(9):
            for j in range(9):
                Ploss+=X1[i]*B[i][j]*X1[j]
        # cost=np.abs(X1[0]+X1[1]+X1[2]+X1[3]+X1[4]+X1[5]+X1[6]+X1[7]+X1[8]+X1[9]-np.sum(Ploss)-self.Pload1)
        # return cost
        return max(0,abs(sum(X1)-Ploss-Pload1-0.1))


3 一点拓展知识

现代这种“探索、征服”的心态,从世界地图的演变可以看得一目了然。早在历史进到现代之前,许多文化就已经有了自己的世界地图。当然,当时并没有人真正知道全世界是什么样子,在亚非大陆上的人对美洲一无所知,美洲文化也不知道亚非大陆上的情形。但碰到不熟悉的地区,地图上不是一笔未提,就是画上了想象出来的怪物和奇景。这些地图上并没有空白的空间,让人觉得全世界就在自己的掌握之中。


在15、16世纪,欧洲人的世界地图开始出现大片空白。从这点可以看出科学心态的发展,以及欧洲帝国主义的动机。地图上的空白可以说是在心理及思想上的一大突破,清楚表明欧洲人愿意承认自己对于一大部分的世界还一无所知。

图1 1459年欧洲人的世界地图。可以看到地图上似乎巨细靡遗,就算是当时欧洲人根

                                 本一无所知的南非地区,都有密密麻麻的信息。

1492年,哥伦布从西班牙出发向西航行,希望能找到一条前往东亚的新航线。哥伦布当时相信的仍然是旧的世界地图,以为全世界在地图上一览无遗。哥伦布从旧地图推算,日本应该位于西班牙以西大约7000公里远。但事实上,从西班牙到东亚的距离要超过两万公里,而且中间还隔着个他不知道的美洲大陆。1492年10月12日大约凌晨2点,哥伦布一行人与这片未知大陆有了第一次接触。皮塔号(Pinta)的瞭望手胡安·罗德里格斯·贝尔梅霍(Juan Rodriguez Berme jo)从桅杆上看到了现在的巴哈马群岛,高呼着:“有陆地!有陆地!”


哥伦布当时相信这个小岛就位于东亚海外,属于“Indies”(印度地方,包含今日印度、中南半岛及东印度群岛等地),所以他把当地人称为“Indians”(这正是美国原住民也被称为“印第安人”的原因)。一直到他过世,哥伦布都不认为自己犯了一个大错。不论是对他还是许多当代的人来说,说他发现了一个完全未知的大陆,这根本难以想象。毕竟千百年来,不管是那些伟大的思想家和学者甚至是不可能犯错的《圣经》,都只知道有欧洲、非洲和亚洲。怎么有可能他们全错了呢?难道《圣经》居然漏了大半个世界,只字未提?这种情况,就好像是说在1969年阿波罗11号要前往月球的途中,居然撞到了另一个从来没人看到的月亮。而正因为哥伦布不愿意接受自己的无知,我们可以说他仍然是个中世纪的人,深信着自己已经知道了全世界,所以就算已经有了如此重大的发现,也无法说服他。

相关文章
|
8天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
6天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
10天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
7天前
|
机器学习/深度学习 数据可视化 Docker
Python环境
Python环境
19 3
|
6天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
14 1
|
11天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
7天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
9天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
20 2
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
58 4
|
4月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【7月更文挑战第22天】在大数据领域,Python算法效率至关重要。本文深入解析时间与空间复杂度,用大O表示法衡量执行时间和存储需求。通过冒泡排序(O(n^2)时间,O(1)空间)与快速排序(平均O(n log n)时间,O(log n)空间)实例,展示Python代码实现与复杂度分析。策略包括算法适配、分治法应用及空间换取时间优化。掌握这些,可提升大数据处理能力,持续学习实践是关键。
122 1