Python进阶(十二)常用数据处理模块

简介: Python进阶(十二)常用数据处理模块

trajectory数据补0

  trajectory数据补0到同等长度:

def data_process(data, max_step):
    """
    # fill zero for shot trajectory, and add label
    :param data: the trajectory data of different length
    :param max_step: the max step(s,a) length of data; the length of s is 49, the length of a is 1.
    :param ep: may useful for distinguish labels
    :return: a list form [features+label]
    """
    full_data = []
    for label, features in enumerate(data):
      # fill zero for shot trajectory, and add label
        new_fearure = list(map(lambda feature:feature+[0]*(max_step*50-len(feature))+[label], features)) 
        full_data.extend(new_fearure)
    return np.array(full_data)
相关文章
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
67 0
|
15天前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
26天前
|
Python
在Python中,可以使用内置的`re`模块来处理正则表达式
在Python中,可以使用内置的`re`模块来处理正则表达式
41 5
|
1月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
36 3
|
1月前
|
Java 程序员 开发者
Python的gc模块
Python的gc模块
|
1月前
|
数据采集 Web App开发 JavaScript
python-selenium模块详解!!!
Selenium 是一个强大的自动化测试工具,支持 Python 调用浏览器进行网页抓取。本文介绍了 Selenium 的安装、基本使用、元素定位、高级操作等内容。主要内容包括:发送请求、加载网页、元素定位、处理 Cookie、无头浏览器设置、页面等待、窗口和 iframe 切换等。通过示例代码帮助读者快速掌握 Selenium 的核心功能。
118 5
|
1月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
40 2
|
1月前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
54 2
|
2月前
|
Python
SciPy 教程 之 SciPy 模块列表 7
`scipy.constants` 模块提供了常用的时间单位转换为秒数的功能。例如,`constants.hour` 返回 3600.0 秒,表示一小时的秒数。其他常用时间单位包括分钟、天、周、年和儒略年。
19 6
|
1月前
|
Python
SciPy 教程 之 SciPy 模块列表 13
SciPy教程之SciPy模块列表13:单位类型。常量模块包含多种单位,如公制、二进制(字节)、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例代码展示了如何使用`constants`模块获取零摄氏度对应的开尔文值(273.15)和华氏度与摄氏度的转换系数(0.5556)。
18 1