Python进阶语法之列表推导式

简介: Python进阶语法之列表推导式

Python进阶语法之列表推导式


Python列表推导式是Python中最有魅力的特性之一,它提供了一种优雅、简洁的方式来创建列表。这种语法不仅使得代码更加简洁,易读,而且在某些情况下还可以提高代码的执行效率。接下来,我们将一起深入探索Python列表推导式的魔力。



列表推导式基础


列表推导式(list comprehension)是一种创建列表的语法糖。基本形式如下:

[expression for item in iterable]


这个语句将iterable中的每个item代入expression得到新的元素,然后把这些元素组成一个新的列表。

例如,我们可以用它来创建一个由1到10的平方构成的列表:

squares = [x**2 for x in range(1, 11)]
print(squares)  # 输出: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]



添加条件过滤


我们还可以在列表推导式中添加条件过滤元素。语法如下:

[expression for item in iterable if condition]


这个语句将满足conditionitem代入expression得到新的元素,然后把这些元素组成一个新的列表。


例如,我们可以创建一个由1到10的所有奇数的平方构成的列表:

odd_squares = [x**2 for x in range(1, 11) if x % 2 == 1]
print(odd_squares)  # 输出: [1, 9, 25, 49, 81]

da0179b8adcb4de4960090261c4467ae.png



嵌套的列表推导式


列表推导式可以嵌套,形式如下:

[expression for item1 in iterable1 for item2 in iterable2]


这将对iterable1iterable2中的所有元素组合执行expression

例如,我们可以创建一个两个列表的所有元素的配对列表:

pairs = [(x, y) for x in [1, 2, 3] for y in ['a', 'b', 'c']]
print(pairs)  
# 输出: [(1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b'), (2, 'c'), (3, 'a'), (3, 'b'), (3, 'c')]




列表推导式与性能


列表推导式不仅让代码更易读,更简洁,有时候还能提高代码性能。因为列表推导式是在Python的C实现层级完成的,所以它比等效的for循环快。


例如,考虑以下两种方式创建一个0到9999的平方列表:

# 方法一:for循环
squares1 = []
for x in range(10000):
squares1.append(x**2)
#方法二:列表推导式
squares2 = [x**2 for x in range(10000)]


在大多数环境下,方法二(列表推导式)的运行速度都会比方法一(for循环)快,因为列表推导式的执行是在Python的底层C语言中完成的,减少了Python层面的解释器开销。 但是,请注意,列表推导式也不是万能的。在处理大数据集或者进行复杂计算时,还应该考虑其他工具,例如NumPy和Pandas等。 ## 列表推导式与可读性 虽然列表推导式在许多情况下可以提高代码的可读性,但这并不意味着任何情况下都应该使用它。如果一个列表推导式过于复杂,它可能会使代码更难理解。在这种情况下,使用传统的for循环可能会更好。


以下是一个复杂的列表推导式例子:

result = [(x, y) for x in range(5) if x % 2 == 0 for y in range(5) if y % 2 == 1]


这个列表推导式生成了两个范围内的所有偶数和奇数的配对,但是理解这段代码需要一些时间。相比之下,下面的for循环版本的代码可能更容易理解:

result = []
for x in range(5):
    if x % 2 == 0:
        for y in range(5):
            if y % 2 == 1:
                result.append((x, y))




案例


  1. 将列表中的每个元素都平方
lst = [1, 2, 3, 4, 5]
squared_lst = [x**2 for x in lst]
print(squared_lst)   # 输出 [1, 4, 9, 16, 25]


cf56dfcdf3864a9a80e1e6358e5617d1.png



  1. 过滤掉列表中的偶数
lst = [1, 2, 3, 4, 5]
odd_lst = [x for x in lst if x % 2 != 0]
print(odd_lst)   # 输出 [1, 3, 5]

42e2b9b230d14ee484e0876d710c24db.png



3.从两个列表中取出所有可能的组合

lst1 = ['a', 'b']
lst2 = [1, 2]
combinations = [(x, y) for x in lst1 for y in lst2]
print(combinations)   # 输出 [('a', 1), ('a', 2), ('b', 1), ('b', 2)]

8b2d735c2eb04be4bc863ae7601ca8e8.png


4.将嵌套的列表展开为一个平面的列表

nested_lst = [[1, 2], [3, 4], [5, 6]]
flat_lst = [num for inner_lst in nested_lst for num in inner_lst]
print(flat_lst)   # 输出 [1, 2, 3, 4, 5, 6]

9f1013bb96ca45bfbe636b16f5c531bb.png


  1. 计算字符串列表中每个字符串的长度
lst = ['hello', 'world', 'python']
lengths = [len(x) for x in lst]
print(lengths)   # 输出 [5, 5, 6]

6e90103802a54576b6d2203c3cb4f685.png

总的来说,列表推导式是Python的一个强大工具,它可以帮助我们写出更优雅、更简洁的代码,同时还有可能提高代码的性能。但在使用列表推导式时,我们也应该关注代码的可读性,避免写出过于复杂的列表推导式。当推导式过于复杂时,不妨回退使用传统的for循环。


相关文章
|
4天前
|
Python
探索Python中的列表推导式
【10月更文挑战第38天】本文深入探讨了Python中强大而简洁的编程工具——列表推导式。从基础使用到高级技巧,我们将一步步揭示如何利用这个特性来简化代码、提高效率。你将了解到,列表推导式不仅仅是编码的快捷方式,它还能帮助我们以更加Pythonic的方式思考问题。准备好让你的Python代码变得更加优雅和高效了吗?让我们开始吧!
|
5天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。
|
15天前
|
存储 Python Perl
python正则语法
本文介绍了正则表达式的基础知识及其在 Python 中的应用。首先解释了为什么要使用正则表达式,通过一个判断手机号的示例展示了正则表达式的简洁性。接着详细介绍了 `re` 模块的常用方法,如 `match()`、`search()`、`findall()`、`finditer()` 等,并讲解了正则表达式的基本语法,包括匹配单个字符、数字、锚字符和限定符等。最后,文章还探讨了正则表达式的高级特性,如分组、编译和贪婪与非贪婪模式。
15 2
|
17天前
|
Python
SciPy 教程 之 SciPy 模块列表 16
SciPy教程之SciPy模块列表16 - 单位类型。常量模块包含多种单位,如公制、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例代码展示了力学单位的使用,如牛顿、磅力和千克力等。
15 0
|
18天前
|
JavaScript Python
SciPy 教程 之 SciPy 模块列表 15
SciPy 教程之 SciPy 模块列表 15 - 功率单位。常量模块包含多种单位,如公制、质量、时间等。功率单位中,1 瓦特定义为 1 焦耳/秒,表示每秒转换或耗散的能量速率。示例代码展示了如何使用 `constants` 模块获取马力值(745.6998715822701)。
15 0
|
18天前
|
JavaScript Python
SciPy 教程 之 SciPy 模块列表 15
SciPy教程之SciPy模块列表15:单位类型。常量模块包含多种单位,如公制、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。功率单位以瓦特(W)表示,1W=1J/s。示例代码展示了如何使用`constants`模块获取马力(hp)的值,结果为745.6998715822701。
16 0
|
18天前
|
C语言 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第24天】在Python编程的世界中,追求代码的简洁性和可读性是永恒的主题。列表推导式(List Comprehensions)作为Python语言的一个特色功能,提供了一种优雅且高效的方法来创建和处理列表。本文将深入探讨列表推导式的使用场景、语法结构以及如何通过它简化日常编程任务。
|
19天前
|
Python
SciPy 教程 之 SciPy 模块列表 13
SciPy 教程之 SciPy 模块列表 13 - 单位类型。常量模块包含多种单位:公制、二进制(字节)、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例:`constants.zero_Celsius` 返回 273.15 开尔文,`constants.degree_Fahrenheit` 返回 0.5555555555555556。
13 0
|
6月前
|
Python
掌握Python中的集合推导式
掌握Python中的集合推导式
|
6月前
|
存储 数据处理 Python
深入剖析Python集合推导式的独特之处
深入剖析Python集合推导式的独特之处