14-Python-对比校验神器-deepdiff库

简介: 14-Python-对比校验神器-deepdiff库

前言

  • 在接口自动化中会遇到想要得出两次响应体(json值)差异,本篇来学习的deepdiff库可以解决这问题

deepdiff库

安装

pip install deepdiff

说明

  • deepdiff模块常用来校验两个对象是否一致,并找出其中差异之处,它提供了:
  • DeepDiff:比较两个对象,对象可以是字段、字符串等可迭代的对象
  • DeepSearch:在对象中搜索其他对象
  • DeepHash:根据对象的内容进行哈希处理

DeepDiff

  • 作用:比较两个对象,对象可以是字段、字符串等可迭代的对象

说明:

  • type_changes:类型改变的key
  • values_changed:值发生变化的key
  • dictionary_item_added:字典key添加
  • dictionary_item_removed:字段key删除

对比json

# -*-coding:utf-8一*-
# @Time:2023/4/16
# @Author: DH
from deepdiff import DeepDiff
# json校验
json_one = {
    'code': 0,
    "message": "失败",
    'data': {
        'id': 1
    }
}
json_two = {
    'code': 1,
    "message": "成功",
    'data': {
        'id': 1
    }
}
print(DeepDiff(json_one, json_two))
# 输出
"""
{'values_changed': {"root['code']": {'new_value': 1, 'old_value': 0}, "root['message']": {'new_value': '成功', 'old_value': '失败'}}}
root['code'] : 改变值的路径
new_value : 新值
old_value :原值
"""

列表校验

  • cutoff_distance_for_pairs: (1 >= float > 0,默认值=0.3);通常结合ignore_order=true使用,用于结果中展示差异的深度。值越高,则结果中展示的差异深度越高。
from deepdiff import DeepDiff
t1 = [[[1.0, 666], 888]]
t2 = [[[20.0, 666], 999]]
print(DeepDiff(t1, t2, ignore_order=True, cutoff_distance_for_pairs=0.5))
print(DeepDiff(t1, t2, ignore_order=True)) # 默认为0.3
print(DeepDiff(t1, t2, ignore_order=True, cutoff_distance_for_pairs=0.2))
"""
{'values_changed': {'root[0][0]': {'new_value': [20.0, 666], 'old_value': [1.0, 666]}, 'root[0][1]': {'new_value': 999, 'old_value': 888}}}
{'values_changed': {'root[0]': {'new_value': [[20.0, 666], 999], 'old_value': [[1.0, 666], 888]}}}
{'values_changed': {'root[0]': {'new_value': [[20.0, 666], 999], 'old_value': [[1.0, 666], 888]}}}
"""

忽略字符串类型

  • ignore_string_type_changes :忽略校验字符串类型,默认为False
print(DeepDiff(b'hello', 'hello', ignore_string_type_changes=True))
print(DeepDiff(b'hello', 'hello'))
"""
输出:
{}
{'type_changes': {'root': {'old_type': <class 'bytes'>, 'new_type': <class 'str'>, 'old_value': b'hello', 'new_value': 'hello'}}}
"""

忽略大小写

  • ignore_string_case:忽略大小写,默认为False
from deepdiff import DeepDiff
print(DeepDiff(t1='Hello', t2='heLLO'))
print(DeepDiff(t1='Hello', t2='heLLO', ignore_string_case=True))
"""
输出:
{'values_changed': {'root': {'new_value': 'heLLO', 'old_value': 'Hello'}}}
{}
"""

DeepSearch

  • 作用:在对象中搜索其他对象

查找字典key/value

from deepdiff import DeepSearch
json_three = {
    'code': 1,
    "message": "成功",
    'data': {
        'id': 1
    }
}
# 查找key
print(DeepSearch(json_three, "code"))
print(DeepSearch(json_three, "name"))
# 查找value
print(DeepSearch(json_three, 1))
"""
输出:
{'matched_paths': ["root['code']"]}
{}
{'matched_values': ["root['code']", "root['data']['id']"]}
"""
# 正则 use_regexp
obj = ["long somewhere", "string", 0, "somewhere great!"]
# 使用正则表达式
item = "some*"
ds = DeepSearch(obj, item, use_regexp=True)
print(ds)
# 强校验 strict_checking 默认True
item = '0'
ds = DeepSearch(obj, item, strict_checking=False)
# ds = DeepSearch(obj, item)  # 默认True
print(ds)
# 大小写敏感  case_sensitive  默认 False 敏感
item = 'someWhere'
ds = DeepSearch(obj, item, case_sensitive=True)
print(ds)

DeepHash

  • 作用:根据对象的内容进行哈希处理
from deepdiff import DeepHash
# 对对象进行hash
json_four = {
    'code': 1,
    "message": "成功",
    'data': {
        'id': 1
    }
}
print(DeepHash(json_four))

extract

  • extract : 根据路径查询值
from deepdiff import extract
# 根据路径查询值
obj = {1: [{'2': 666}, 3], 2: [4, 5]}
path = "root[1][0]['2']"
value = extract(obj, path)
print(value)
"""
输出:
666
"""

grep

  • 搜索
from deepdiff import grep
obj = ["long somewhere", "string", 0, "somewhere great!"]
item = "somewhere"
ds = obj | grep(item)
print(ds)
# use_regexp 为True 表示支持正则
obj = ["something here", {"long": "somewhere", "someone": 2, 0: 0, "somewhere": "around"}]
ds = obj | grep("some.*", use_regexp=True)
print(ds)
# 根据值查询路径
obj = {1: [{'2': 'b'}, 3], 2: [4, 5, 5]}
result = obj | grep(5)
print(result)
"""
输出:
{'matched_values': ['root[2][1]', 'root[2][2]']}
"""

相关文章
|
19天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
22天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
53 0
|
8天前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
16天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
51 4
|
16天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
25 2
|
21天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
41 7
|
22天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
29 3
|
23天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
31 2
|
14天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
21天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
37 0
下一篇
无影云桌面