利用Astar算法实现飞行轨迹的三维路径规划(基于Matlab代码实现)

简介: 利用Astar算法实现飞行轨迹的三维路径规划(基于Matlab代码实现)

1 概述

随着自动化技术的发展,现代航空技术水平有了前所未有的提高,促进了无人机在军事、民用领域的广泛应用。航迹规划技术作为无人机任务规划的关键技术,一直都是无人机领域的一大研究热点。无人机航迹规划是指在满足其运动约束条件的同时,寻找无人机从起始点到目标点符合某种性能指标的最优或次优的可飞轨迹。在现实应用中,由于无人机飞行环境复杂,约束条件多,航迹规划的质量不仅取决算法的优劣还与解决问题的策略相关,因此如何建立准确的环境模型和如何选取高效的规划算法成为解决航迹规划问题的要素。


1.1研究背景

本文是在Astar算法的基础上,对无人机三维航迹规划问题展开研究,主要研究内容如下:


首先,对无人机航迹规划相关问题进行数学建模,包括无人机模型、机动性能约束和等效数字地图。重点介绍飞行空间三维数学模型的建立,将飞行区域中基准地形、山峰及威胁综合,建立包含飞行区域综合信息的三维数学模型。为后面研究无人机离线、在线航迹规划问题做了铺垫。


其次,研究基于遗传算法的无人机三维离线航迹规划。Astar算法解决航迹规划问题需要进行复杂的编码,故需要改进进化操作算子。本文根据航迹段特点改进变异操作算子,从而生成更适合无人机飞行的航迹。此外针对Astar算法早熟问题改进适应度函数,构造一种随进化代数动态调整的非线性适应度函数,该方法解决了算法早熟问题并且提高了算法收敛速度。


最后,研究基于Astar算法的在线航迹规划。由于在突发威胁情况下需要采取应急的二次重规划,为提高应对突发威胁的应急能力,在线航迹规划阶段应选用实时性较好的规划算法。


2 运行结果

3 Matlab代码实现

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% A* Terrain Profile ALGORITHM Demo
% Traditional A* search demo 3D
% 01-31-2014
% Design by ybma
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
load ('MapData.mat');
WayPoints = [];
WayPointsAll = [];
OPEN_COUNT = 0;
OPEN_COUNT_ALL = 0;
%%%%%%Terrain Data Fill%%%%%%%
Cut_Data = Final_Data(301:400,101:200);
MIN_Final_Data = min(min(Cut_Data));
%%%%%%%ALGORITHM START%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%Compute time%%%%%%%%%%%
tic
timerVal = tic
[WayPoints,OPEN_COUNT] = A_star(MAX_X,MAX_Y,MAX_Z,20,20,7,90,70,5,MAP,CLOSED,Display_Data);
toc(timerVal)
elapsedTime = toc(timerVal)
figure(1)
axis([1 MAX_X 1 MAX_Y 1 MAX_Z]);
plot3(WayPoints(:,1),WayPoints(:,2),WayPoints(:,3),'b','linewidth',2);
hold on
surf(Display_Data(1:100,1:100)','linestyle','none');
plot3(20,20,7,'*');
plot3(90,70,5,'^');
set(gca,'xticklabel','');
set(gca,'yticklabel','');
set(gca,'zticklabel',{'2000','4000','6000','4000','5000','6000','7000','8000','9000','10000'});
xlabel('纬度');
ylabel('经度');
zlabel('高度(m)');
grid on


4 参考文献

[1]晁泽睿,南英,王昕,冯开.基于数字地图的三维飞行轨迹规划技术[J].舰船电子工程,2022,42(06):107-111+139.


[2]李喆,王顺森,李勇,吴军,颜晓江,徐耀博.船舶管线智能布置的优化Astar算法[J/OL].西安交通大学学报,2022(12):1-10[2022-10-19].http://kns.cnki.net/kcms/detail/61.1069.t.20220823.1101.002.html


部分理论来源于网络,如有侵权请联系删除。

相关文章
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
123 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
2月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
95 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
2月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
71 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
3月前
|
算法
基于kalman滤波的UAV三维轨迹跟踪算法matlab仿真
本文介绍了一种使用卡尔曼滤波(Kalman Filter)对无人飞行器(UAV)在三维空间中的运动轨迹进行预测和估计的方法。该方法通过状态预测和观测更新两个关键步骤,实时估计UAV的位置和速度,进而生成三维轨迹。在MATLAB 2022a环境下验证了算法的有效性(参见附图)。核心程序实现了状态估计和误差协方差矩阵的更新,并通过调整参数优化滤波效果。该算法有助于提高轨迹跟踪精度和稳定性,适用于多种应用场景,例如航拍和物流运输等领域。
|
2月前
MATLAB - 选择机械臂路径规划、轨迹规划方式(下)
MATLAB - 选择机械臂路径规划、轨迹规划方式
92 0
|
2月前
|
数据可视化 机器人
MATLAB - 选择机械臂路径规划、轨迹规划方式(上)
MATLAB - 选择机械臂路径规划、轨迹规划方式
91 0
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于强化学习的路径规划matlab仿真,对比QLearning和SARSA
本仿真展示了使用MATLAB 2022a实现的Q-Learning路径规划算法。通过与环境交互,智能体学习从起点至终点的最佳路径。Q-Learning采用off-policy学习方式,直接学习最优策略;而SARSA为on-policy方法,依据当前策略选择动作。仿真结果显示智能体逐步优化路径并减少步数,最终实现高效导航。核心代码片段实现了Q表更新、奖励计算及路径可视化等功能。
62 0
|
4月前
|
Python
求解带有限重的三维装箱问题——启发式深度优先搜索算法
求解带有限重的三维装箱问题——启发式深度优先搜索算法
60 4
|
4月前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
4月前
|
人工智能 算法 物联网
求解三维装箱问题的启发式深度优先搜索算法(python)
求解三维装箱问题的启发式深度优先搜索算法(python)
44 0
下一篇
无影云桌面