汽车后市场的大数据引擎谁人可造

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

最近几年,大数据和云服务这两个概念比较火,哪个行业都以沾染这两个概念为荣。汽车后市场比较落伍,还没见有人以大数据和云服务在汽车后市场创业。相对而言,大数据在国内各行各业仍然是个概念,但云服务不同,很多行业都已经有落地的产品,尤其是云服务器的爆发式增长更是让云的概念得到了普及。我今天利用一篇短文普及下汽车后市场大数据的概念。

最近陆续有不少行业内外的朋友拜访我,谈话多,思考多,但撰稿、读书的时间少了,很多问题、很多书都得等到周末有空写、有空读。有关汽车后市场的思考也是断断续续,今天和各位朋友分享一个新话题:汽车后市场的大数据在哪里?

我在此前的博客里曾经说过,中国汽车产业的现状是无数据、假数据和小数据,大数据属于概念尚不为人知阶段。比如我们不知道每年汽车产销量的精确数字哪个更靠谱,更没法知道各品牌不同车型的实际销量哪个是真的,我们更无法知道汽车经销商的不同车型库存,不知道维修站的各车型准确进厂台次,任何在车企搞战略研究的都面临无法知道行业经销商库存数的尴尬,甚至自己品牌经销商在系统内报告库存、销量的时候也频频作假,这就是假数据的来源之一,和国家统计部门的苦恼是一样的。除了无数据和假数据,一些厂商会通过系统获得一些数据,比如进店客流、转化率、续保率等等,但这些数据都是人工统计,要成为大数据、能够进行数据挖掘,这些小数据还不够用。

我认为汽车后市场行业的大数据可能有三个来源,其一是来自社交媒体,微信、微博,这些平台会有大量文本数据、语音数据,经销商与顾客的每一次交谈、微博里的每一条信息、微信里的每一次互动对话,通过合适的语音、语义挖掘,都可能发掘消费者与消费行为的相关关系。有关这个我会另文详述。

其二是来自Telematics系统,未来几年,Telematics系统会成为汽车的标配,类似车载黑匣子的这类系统会自动记录车辆的大量数据,由于这套系统会内置车主娱乐、社交、信息系统,由机器记录的信息会让厂商真正拥有大数据,如何分析这些数据会有很多新产业,比如根据Telematics系统数据来研究拥堵问题,再比如根据机器记录的紧急刹车和超速情况分析车主驾驶行为与车辆故障、交通事故出险率的相关关系,并籍此给车主提供更精准的使用建议或据此向不同用户收取不同保费等等。至于地理位置信息、娱乐信息、车主社交信息这类信息更是取之不尽的金矿,这就是Telematics产业的朝阳产业属性所在。

其三是来自保险行业,这是本文想抛砖引玉的地方。总体而言,和保险相关的大数据来自两个方面。其一是基于OBD的驾驶行为数据,这是在车辆没有前备Telematics系统的情况下,获取用户驾驶行为的重要途径。我记得此前有位微信的朋友送了几个他开发的车载OBD产品给我测评,我又找了汽车平面以及互联网的编辑参与测评,一位互联网的编辑直言不讳地告诉我:我们找不到车主使用这个OBD系统的必要性。此话不假,但如果车辆没有装备Telematics系统的情况下,装备OBD有助于识别产生用户行为的大数据,这是识别用户特征的关键。随着Telematics系统普及,车主再后装OBD意义确实不大,有位业内朋友甚至开发出破解厂商私有协议的OBD设备,他以此为荣,认为其他OBD开发者都没有这个功能,虽然这种破解有助于这种OBD产品获取更多车辆信息,但也不足以让用户为此买单——知道更多对车主的意义何在呢?

保险行业的另一个大数据来源是保险理赔、定损的数据后台,这是本文探讨的重点。

行业内虽然有人保、太保、平安等诸多保险公司,但这些保险公司要完成车辆车险投保、出险定损是需要一个准确的数据平台来支撑的——目前在售的车型就有400多款,每款车型都有不同型号,每个型号又都有很长的升级历史,要完成新车投保和续保,必须获得每款新车不同时期的车辆残值,这是投保的基础——显然保险公司不会拿汽车网站的数据做参考,它们写错了是不用赔偿任何人损失的。

此外,车辆出现事故,要定损必须获得每款车型的零部件价格、工时费价格,这是确定索赔金额的关键,显然,不同地区的工时费是有差异的,不同维修企业、不同渠道、不同品牌的零部件价格都是有差异的,这就意味着要让定损的金额得到保险公司、维修企业、车主的三方认可,必须有个公道的第三方机构来确定定损标准,不同地区和业态的配件价格、工时价格就是必须收集和获取的数据。

从这两方面看,要获得这些数据需要花费大量的人力和物力,单个保险公司去做显然成本太高。一位业内朋友的来访让我明白,中国绝大多数保险公司、车企都从同一家数据供应商那里获得专业的数据、软件和培训服务,这是让我这个后市场观察者叹为观止的事情。

我曾经研究过欧洲的后市场情况,那里仅仅是做汽车原装和后市场零部件的型号互换和报价查询系统的就有多个数据供应商,而国内目前在做这个事情的当然也有,比如做O2O的创业者中就有声称通过帮厂商开发零部件管理平台而“灰色”地获得了众多厂商的零部件报价数据,一些保险公估公司也声称有这类数据,他们希望据此建立后市场入口,并借助入口开始O2O的探索。但对大多数要做O2O服务,或者对从事与后市场相关互联网业务的创业者而言,基于准确的历史车型数据、维修保养数据做出的服务产品才更有价值,仅靠汽车网站的数据是不足以为车主提供专业服务的。

我在此前的文章里多次提及,如果谁希望成为互联网汽车后市场的入口,历史车型查询、配件价格查询、工时查询、常规保养价格查询都是必须要提供的基础服务。有了这个基础,任何后市场创新才有可能做到专业。眼下看,似乎产业内只有我上面提到的这家公司有可能在现有数据的基础上增加常规保养数据库之后做出这种数据引擎。

我相信,一旦这家公司做出后市场的数据查询引擎,他会更愿意开放平台,让更多O2O应用开发者基于这个数据平台建立更多有趣的后市场应用——这是其数据权威性得以建立的基础。这样一来,更多本地化的O2O企业可以专注于本地维修网络的发掘和合作模式创新,专注于获取用户,专注于撮合线上交易,专注于增加交易达成率,无需再为基础数据库更新投入资源。当然,不排除会有竞争者加入这场数据引擎大战,因为保险正是基于大数据的预测来盈利的。与保险相关的事故车维修是几乎所有维修企业的利润主要来源。而保险、事故车维修又与二手车交易息息相关。这意味着保险背后的数据撬动的是整个汽车售后服务产业链,谁能抓住这个大数据的机会,谁才能真正拿到汽车后市场互联网盈利的船票——欢迎更多投资者竞价登船!

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
人工智能 安全 算法
AI与大数据:智慧城市安全的护航者与变革引擎
AI与大数据:智慧城市安全的护航者与变革引擎
221 1
|
7月前
|
存储 数据采集 大数据
大数据处理与分析技术:驱动智能决策的引擎
本文介绍了大数据处理与分析技术在现代社会中的重要性和应用。从数据采集、存储、处理到分析决策,大数据技术为我们提供了深入洞察和智能决策的能力,推动着各行各业的创新和发展。
295 0
|
1天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
31 15
|
1天前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
29 8
|
2月前
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
236 6
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
2月前
|
存储 数据采集 分布式计算
大数据技术:开启智能时代的新引擎
【10月更文挑战第5天】大数据技术:开启智能时代的新引擎
|
7月前
|
SQL 分布式计算 DataWorks
MaxCompute产品使用合集之DataWorks体验案例绑定如何绑定到正确的maxcomputer引擎上
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
57 0
|
4月前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
84 0
|
5月前
|
存储 分布式计算 定位技术
高德地图与阿里云MaxCompute:构建智慧出行的数据引擎
通过与阿里云MaxCompute的紧密结合,高德地图成功构建了一个高效、稳定的大数据处理平台,实现了从数据采集到价值输出的全过程自动化。这不仅提升了数据处理效率,还极大地改善了用户体验,为智慧出行的发展奠定了坚实的基础。随着技术的不断进步,未来高德地图还将探索更多创新的应用场景,持续推动地图服务向智能化方向演进。
下一篇
DataWorks