基于redis实现分布式锁(上)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 基于redis实现分布式锁

基本实现

借助于redis中的命令setnx(key, value),key不存在就新增,存在就什么都不做。同时有多个客户端发 送setnx命令,只有一个客户端可以成功,返回1(true);其他的客户端返回0(false)。

  • 1. 多个客户端同时获取锁(setnx)
  • 2. 获取成功,执行业务逻辑,执行完成释放锁(del)
  • 3. 其他客户端等待重试

改造StockService方法:

1. @Service
2. public class StockService {
3.    @Autowired
4.    private StockMapper stockMapper;
5.    @Autowired
6.    private LockMapper lockMapper;
7.    @Autowired
8.    private StringRedisTemplate redisTemplate;
9.    public void checkAndLock() {
10.        // 加锁,获取锁失败重试
11.        while (!this.redisTemplate.opsForValue().setIfAbsent("lock", 
12. 
13. "xxx")){
14.            try {
15.                 Thread.sleep(100);
16.            } catch (InterruptedException e) {
17.                 e.printStackTrace();
18.            }
19.        }
20.        // 先查询库存是否充足
21.        Stock stock = this.stockMapper.selectById(1L);
22.        // 再减库存
23.        if (stock != null && stock.getCount() > 0){
24.             stock.setCount(stock.getCount() - 1);
25.            this.stockMapper.updateById(stock);
26.        }
27.        // 释放锁
28.        this.redisTemplate.delete("lock");
29.    }
30. }

其中,加锁:

1. // 加锁,获取锁失败重试
2. while (!this.redisTemplate.opsForValue().setIfAbsent("lock", "xxx")){
3.    try {
4.         Thread.sleep(100);
5.    } catch (InterruptedException e) {
6.         e.printStackTrace();
7.    }
8. }

解锁:

1. // 释放锁
2. 
3. this.redisTemplate.delete("lock");

使用Jmeter压力测试如下:

查看mysql数据库:

死锁

解决:给锁设置过期时间,自动释放锁。 设置过期时间两种方式:

1. 通过expire设置过期时间(缺乏原子性:如果在setnx和expire之间出现异常,锁也无法释放)

2. 使用set指令设置过期时间:set key value ex 3 nx(既达到setnx的效果,又设置了过期时间)

压力测试肯定也没有问题。

问题:可能会释放其他服务器的锁。 场景:如果业务逻辑的执行时间是7s。执行流程如下

1. index1业务逻辑没执行完,3秒后锁被自动释放。

2. index2获取到锁,执行业务逻辑,3秒后锁被自动释放。

3. index3获取到锁,执行业务逻辑

4. index1业务逻辑执行完成,开始调用del释放锁,这时释放的是index3的锁,导致index3的业务只 执行1s就被别人释放。 最终等于没锁的情况。

解决:setnx获取锁时,设置一个指定的唯一值(例如:uuid);释放前获取这个值,判断是否自己的 锁

防误删

实现如下:

问题:删除操作缺乏原子性。 场景:

1. index1执行删除时,查询到的lock值确实和uuid相等

2. index1执行删除前,lock刚好过期时间已到,被redis自动释放

3. index2获取了lock 4. index1执行删除,此时会把index2的lock删除

解决方案:没有一个命令可以同时做到判断 + 删除,所有只能通过其他方式实现(LUA脚本)

使用lua保证删除原子性

删除LUA脚本:

1. if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', 
2. KEYS[1]) else return 0 end

代码实现:

1. public void checkAndLock() {
2.    // 加锁,获取锁失败重试
3.    String uuid = UUID.randomUUID().toString();
4.    while (!this.redisTemplate.opsForValue().setIfAbsent("lock", uuid, 3, 
5. 
6. TimeUnit.SECONDS)){
7.        try {
8.             Thread.sleep(50);
9.        } catch (InterruptedException e) {
10.             e.printStackTrace();
11.        }
12.    }
13.    // 先查询库存是否充足
14.    Stock stock = this.stockMapper.selectById(1L);
15.    // 再减库存
16.    if (stock != null && stock.getCount() > 0){
17.         stock.setCount(stock.getCount() - 1);
18.        this.stockMapper.updateById(stock);
19.    }
20.    // 释放锁
21.    String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return 
22. redis.call('del', KEYS[1]) else return 0 end";
23.    this.redisTemplate.execute(new DefaultRedisScript<>(script, 
24. 
25. Long.class), Arrays.asList("lock"), uuid);
26. }

压力测试:

可重入锁

由于上述加锁命令使用了 SETNX ,一旦键存在就无法再设置成功,这就导致后续同一线程内继续加 锁,将会加锁失败。当一个线程执行一段代码成功获取锁之后,继续执行时,又遇到加锁的子任务代 码,可重入性就保证线程能继续执行,而不可重入就是需要等待锁释放之后,再次获取锁成功,才能继 续往下执行。

用一段 Java 代码解释可重入:

1. public synchronized void a() {
2.     b();
3. }
4. 
5. public synchronized void b() {
6.    // pass
7. }

假设 X 线程在 a 方法获取锁之后,继续执行 b 方法,如果此时不可重入,线程就必须等待锁释放,再次争抢锁。

锁明明是被 X 线程拥有,却还需要等待自己释放锁,然后再去抢锁,这看起来就很奇怪,我释放我自己~

可重入性就可以解决这个尴尬的问题,当线程拥有锁之后,往后再遇到加锁方法,直接将加锁次数加 1,然后再执行方法逻辑。退出加锁方法之后,加锁次数再减 1,当加锁次数为 0 时,锁才被真正的释 放。 可以看到可重入锁最大特性就是计数,计算加锁的次数。所以当可重入锁需要在分布式环境实现时,我们也就需要统计加锁次数。

解决方案:redis + Hash


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
相关文章
|
27天前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
136 2
|
2月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
2月前
|
NoSQL Redis
Lua脚本协助Redis分布式锁实现命令的原子性
利用Lua脚本确保Redis操作的原子性是分布式锁安全性的关键所在,可以大幅减少由于网络分区、客户端故障等导致的锁无法正确释放的情况,从而在分布式系统中保证数据操作的安全性和一致性。在将这些概念应用于生产环境前,建议深入理解Redis事务与Lua脚本的工作原理以及分布式锁的可能问题和解决方案。
117 8
|
4月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
291 67
|
3月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
925 7
|
4月前
|
缓存 监控 NoSQL
Redis设计与实现——分布式Redis
Redis Sentinel 和 Cluster 是 Redis 高可用与分布式架构的核心组件。Sentinel 提供主从故障检测与自动切换,通过主观/客观下线判断及 Raft 算法选举领导者完成故障转移,但存在数据一致性和复杂度问题。Cluster 支持数据分片和水平扩展,基于哈希槽分配数据,具备自动故障转移和节点发现机制,适合大规模高并发场景。复制机制包括全量同步和部分同步,通过复制积压缓冲区优化同步效率,但仍面临延迟和资源消耗挑战。两者各有优劣,需根据业务需求选择合适方案。
|
4月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
318 3
|
4月前
|
存储 NoSQL Java
从扣减库存场景来讲讲redis分布式锁中的那些“坑”
本文从一个简单的库存扣减场景出发,深入分析了高并发下的超卖问题,并逐步优化解决方案。首先通过本地锁解决单机并发问题,但集群环境下失效;接着引入Redis分布式锁,利用SETNX命令实现加锁,但仍存在死锁、锁过期等隐患。文章详细探讨了通过设置唯一标识、续命机制等方法完善锁的可靠性,并最终引出Redisson工具,其内置的锁续命和原子性操作极大简化了分布式锁的实现。最后,作者剖析了Redisson源码,揭示其实现原理,并预告后续关于主从架构下分布式锁的应用与性能优化内容。
224 0
|
NoSQL Redis 数据库
用redis实现分布式锁时容易踩的5个坑
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 近有不少小伙伴投入短视频赛道,也出现不少第三方数据商,为大家提供抖音爬虫数据。 小伙伴们有没有好奇过,这些数据是如何获取的,普通技术小白能否也拥有自己的抖音爬虫呢? 本文会全面解密抖音爬虫的幕后原理,不需要任何编程知识,还请耐心阅读。
用redis实现分布式锁时容易踩的5个坑
|
NoSQL Java 关系型数据库
浅谈Redis实现分布式锁
浅谈Redis实现分布式锁

热门文章

最新文章