要求
- 理解 CAP 定理
- 知道常见的一致性级别
CAP 定理
- Consistency 一致性:访问分布式系统中任意节点,总能返回一致的结果
- Every read receives the most recent write or an error
- Availability 可用性:分布式系统总能向客户端返回响应
- Every request receives a (non-error) response, without the guarantee that it contains the most recent write
- Partition tolerance 分区容忍:当分布式系统节点间通信发生了消息丢失或消息延迟,仍然允许系统继续运行
- The system continues to operate despite an arbitrary number of messages being dropped (or delayed) by the network between nodes
CAP 定理:最多三选二,无法兼得,通常在 CP 或者 AP 之间做出选择
不一致的产生
client 向 Node1 写入新值 v1
写入成功 Node1 更新成 v1
Node1 在没有将变更同步到 Node2 时,就向客户端返回了应答
client 发起向 Node2 的读操作
返回了旧值 v0(不一致)的结果
保证一致性
client 向 Node1 写入新值 v1
写入成功 Node1 更新成 v1,此时不能立刻向 client 返回应答,而是需要将 v1 同步到 Node2
同步 v1 成功
此时才能向 client 返回应答
如果此时 client 再去访问 Node2,不会出现不一致的情况
保 CP 失 A
当发生了网络分区,Node1 与 Node2 已经失去了联系,这时仍想对外提供服务(保 P)
client 向 Node1 写入新值 v1
写入 Node1 成功,但无法同步至 Node2
这时为了保证一致性,Node1 不能向 client 返回应答,造成操作挂起无法完成(失去可用性)
保 AP 失 C
当发生了网络分区,Node1 与 Node2 已经失去了联系,这时仍想对外提供服务(保 P)
client 向 Node1 写入新值 v1
写入 Node1 成功,但无法同步至 Node2
为了保证可用性,向 client 返回了应答(但牺牲了一致性)
一致性级别
CP 和 AP 之间需要做权衡,其实根据需求不同,也可以将一致性划分成几个级别,在这些级别里做一个权衡。
- 强一致性:系统写入什么,读出来的也会是什么,但实现起来往往对性能影响较大,例如之前 CP 的例子
- 例如:火车站售票,有就是有,没有就是没有,不能出现不一致的情况
- 典型算法:Paxos、Raft、ZAB
- 弱一致性:系统写入成功后,不承诺立刻可以读到写入的值,也不承诺具体多久后数据能达到一致,还可以细分为:
- 会话一致性,同一个客户端会话中可以保证一致,其它会话不能保证
- 用户一致性,同一个用户中可以保证一致,其它用户不能保证
- 例如:网上购物,在商品详情页看到库存量还有好多,下单的瞬间才被提示“库存量不足”,实际上商品详情页展示的库存并不是最新的数据,只是在某个流程上才会做准确的检查
- 最终一致性:是弱一致性的特例,保证在一定时间内,能够达到一个一致的状态
- 例如:转账,转账完成后,会有一个提示,您的转账会在 24 小时内到账,一般用户也能接受,但最终必须是一致的
- 典型协议:Gossip