python开发低代码数据可视化大屏:pandas.read_excel读取表格

简介: python开发低代码数据可视化大屏:pandas.read_excel读取表格

读取Excel函数pd.read_excel()

pd.read_excel(),函数的官方文档是这么说的:将Excel文件读取到pandas DataFrame中,支持本地文件系统或URL的’xls’和’xlsx’文件扩展名,带有这两种扩展名的文件,函数都可以处理。

pd.read_excel(io,sheetname=0,header=0,skiprows=None,index_col=None,names=None,arse_cols=None,date_parser=None,na_values=None,thousands=None,convert_float=True,has_index_names=None,converters=None,dtype=None,true_values=None,false_values=None,engine=None,squeeze=False,**kwds)


Excel表格格式

   类别      货号    库存  吊牌价  店播价        折扣         时间
0  鞋子  EE7690  5000  569  219  0.384886 2021-11-11
1  服装  EE7691  5000  569  219  0.384886 2021-11-12
2  配件  EG3205  3639  629  259  0.411765 2021-11-13
3  鞋子  EG3560  5000  569  249  0.437610 2021-11-14
4  服装  FV8112   687  629  259  0.411765 2021-11-15
5  配件  FW2872   426  599  269  0.449082 2021-11-16
6  鞋子  EE6203  5000  699  299  0.427754 2021-11-17
7  服装  EE6202  5000  699  299  0.427754 2021-11-18


引入模块

import pandas as pd
df = pd.read_excel(r"adi.xlsx", sheet_name=1)
print(df)


引入模块

import pandas as pd
df = pd.read_excel(r"adi.xlsx", sheet_name=1)
print(df)


选取前或后N条记录

# 前N条记录
print(df.head(2))
# 尾N条记录
print(df.tail(3))



筛选条件

# 筛选条件
print(df[df['库存'] < 800])



筛选不同类别

# 范围
cat = df[df['类别'].isin(['服装', '鞋子'])]
print(cat)



某列数据求和

# 某列数据求和
print(df['库存'].sum())


@漏刻有时LockDataV

相关文章
|
6天前
|
存储 数据库连接 API
Python环境变量在开发和运行Python应用程序时起着重要的作用
Python环境变量在开发和运行Python应用程序时起着重要的作用
45 15
|
18天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
107 45
|
12天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
48 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
13天前
|
JSON 安全 API
如何使用Python开发API接口?
在现代软件开发中,API(应用程序编程接口)用于不同软件组件之间的通信和数据交换,实现系统互操作性。Python因其简单易用和强大功能,成为开发API的热门选择。本文详细介绍了Python开发API的基础知识、优势、实现方式(如Flask和Django框架)、实战示例及注意事项,帮助读者掌握高效、安全的API开发技巧。
40 3
如何使用Python开发API接口?
|
12天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
53 19
|
6天前
|
JSON API 数据格式
如何使用Python开发1688商品详情API接口?
本文介绍了如何使用Python开发1688商品详情API接口,获取商品的标题、价格、销量和评价等详细信息。主要内容包括注册1688开放平台账号、安装必要Python模块、了解API接口、生成签名、编写Python代码、解析返回数据以及错误处理和日志记录。通过这些步骤,开发者可以轻松地集成1688商品数据到自己的应用中。
21 1
|
8天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
12天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
19天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
63 7
|
21天前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
探讨了Python开发中性能优化和代码审查的重要性,介绍了选择合适数据结构、使用生成器、避免全局变量等性能优化技巧,以及遵守编码规范、使用静态代码分析工具、编写单元测试等代码审查方法,旨在帮助开发者提升开发效率和代码质量。
41 8