人脸识别:
注册完后就是识别,识别主要做一个简单的活体检测。识别后将人脸相关信息显示出来。
注意,人脸识别效果可以做出特效,本人才疏学浅,谁会canvas动画的可以私我,有个人脸识别的动画特效需要实现,我做了一个简单的上下扫描动画。
下面就将代码贴出来:
//人脸识别 public JsonResult Face_Distinguish() { // 设置APPID/AK/SK var API_KEY = "XFPA49myCG7S37XP1DxjLbXF"; //你的 Api Key var SECRET_KEY = "ZvZKigrixMLXNZOLmkrG6iDx9QprlGuT"; //你的 Secret Key var client = new Baidu.Aip.Face.Face(API_KEY, SECRET_KEY); client.Timeout = 60000; // 修改超时时间 var imageType = "BASE64"; //BASE64 URL string imgData64 = Request["imgData64"]; imgData64 = imgData64.Substring(imgData64.IndexOf(",") + 1); //将‘,’以前的多余字符串删除 ResultInfo result = new ResultInfo(); try { var groupId = "group1"; var userId = "user1"; var result323 = client.Detect(imgData64, imageType); //活体检测阈值是多少 //0.05 活体误拒率:万分之一;拒绝率:63.9% //0.3 活体误拒率:千分之一;拒绝率:90.3% //0.9 活体误拒率:百分之一;拒绝率:97.6% //1误拒率: 把真人识别为假人的概率. 阈值越高,安全性越高, 要求也就越高, 对应的误识率就越高 //2、通过率=1-误拒率 //所以你thresholds参数返回 和 face_liveness 比较大于推荐值就是活体 ////活体判断 var faces = new JArray { new JObject { {"image", imgData64}, {"image_type", "BASE64"} } }; var Living = client.Faceverify(faces); //活体检测交互返回 var LivingJson = Newtonsoft.Json.JsonConvert.SerializeObject(Living); var LivingObj = Newtonsoft.Json.JsonConvert.DeserializeObject(LivingJson) as JObject; if (LivingObj["error_code"].ToString() == "0" && LivingObj["error_msg"].ToString() == "SUCCESS") { var Living_result = Newtonsoft.Json.JsonConvert.DeserializeObject(LivingObj["result"].ToString()) as JObject; var Living_list = Living_result["thresholds"]; double face_liveness = Convert.ToDouble(Living_result["face_liveness"]); var frr = Newtonsoft.Json.JsonConvert.SerializeObject(Living_list.ToString()); var frr_1eObj = Newtonsoft.Json.JsonConvert.DeserializeObject(Living_list.ToString()) as JObject; double frr_1e4= Convert.ToDouble(frr_1eObj["frr_1e-4"]); if (face_liveness < frr_1e4) { result.info = "识别失败:不是活体!"; return Json(result, JsonRequestBehavior.AllowGet); } } //首先查询是否存在人脸 var result2 = client.Search(imgData64, imageType, groupId); var strJson = Newtonsoft.Json.JsonConvert.SerializeObject(result2); var o2 = Newtonsoft.Json.JsonConvert.DeserializeObject(strJson) as JObject; //判断是否存在当前人脸,相识度是否大于80 if (o2["error_code"].ToString() == "0" && o2["error_msg"].ToString() == "SUCCESS") { var result_list = Newtonsoft.Json.JsonConvert.DeserializeObject(o2["result"].ToString()) as JObject; var user_list = result_list["user_list"]; var Obj = JArray.Parse(user_list.ToString()); foreach (var item in Obj) { //80分以上可以判断为同一人,此分值对应万分之一误识率 var score = Convert.ToInt32(item["score"]); if (score > 80) { result.info = result2.ToString(); result.res = true; result.startcode = 221; return Json(result, JsonRequestBehavior.AllowGet); } } } else { result.info = strJson.ToString(); result.res = false; return Json(result, JsonRequestBehavior.AllowGet); } } catch (Exception e) { result.info = e.Message; } return Json(result, JsonRequestBehavior.AllowGet); } //识别成功,查询数据库 public JsonResult Face_UserInfoList() { ResultInfo result = new ResultInfo(); //这里就不进行非空判断了,后期根据实际情况进行优化 var Guid_Id = Request["Guid_Id"]; //根据人脸唯一标识判断是否存在数据 List<Face_UserInfo> strlist = new Face_UserInfoBLL().GetfaceinfoByToken(Guid_Id); var strJson = Newtonsoft.Json.JsonConvert.SerializeObject(strlist); result.info = strJson; result.res = true; return Json(result, JsonRequestBehavior.AllowGet); }
总结:
匆匆忙忙就结束了,其实学起来也简单,大家下载demo对比学习一下,有什么疑问大家讨论讨论。
删除、更新还是一样的操作,去直接拷贝官网的几行代码即可,都是需要face_token作为添加更新删除,这个字段注册的时候已经存到数据库了。
我的百度人脸库一直开启,需要使用的小伙伴们自行在下面代码里面提取api_key和secret_key
又要去开启新项目,大家后面再见。
关注小编不迷路!
demo源码下载:
git下载链接:https://gitee.com/xiongze/FaceRecognition.git
百度网盘源码下载链接:https://pan.baidu.com/s/1IzJCeF8uTKjZ882BTxI4bw
提取码:p92w