推荐系统读书笔记&关键核心点纪要

简介: 推荐系统读书笔记&关键核心点纪要

image.png

目录
相关文章
|
3月前
|
存储 人工智能 搜索推荐
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,详细阐述了如何构建泰迪内推平台的招聘与求职双向推荐系统,包括数据收集、分析、画像构建、岗位匹配度和求职者满意度模型的建立,以及履约率最优化的推荐模型,提供了27页的论文和实现代码。
76 0
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码
|
6月前
|
机器学习/深度学习 数据采集 自然语言处理
【热门话题】常见分类算法解析
本文介绍了6种常见分类算法:逻辑回归、朴素贝叶斯、决策树、支持向量机、K近邻和神经网络。逻辑回归适用于线性问题,朴素贝叶斯在高维稀疏数据中有效,决策树适合规则性任务,SVM擅长小样本非线性问题,KNN对大规模数据效率低,神经网络能处理复杂任务。选择算法时需考虑数据特性、任务需求和计算资源。
98 0
运筹学学习笔记关键点纪要
运筹学学习笔记关键点纪要
63 0
|
安全 算法 数据安全/隐私保护
第九章 知识结构图谱
第九章 知识结构图谱
|
SQL 存储 搜索推荐
基于线上考研资讯数据抓取的推荐系统的设计与实现(论文+源码)_kaic
随着互联网的飞速发展,互联网在各行各业的应用迅速成为众多学校关注的焦点。他们利用互联网提供电子商务服务,然后有了“考研信息平台”,这将使学生考研的信息平台更加方便和简单。 对于考研信息平台的设计,大多采用java技术。在设计了一个搭载mysal数据库的全人系统,是根据目前网上考研信息平台的情况,专门开发的,专门根据学生的需要,实现网上考研信息平台的在线管理,并定期进行各种信息存储,进入考研信息平台页面后,即可开始操作主控界面。系统功能包括学生前台:首页、考研信息、申请指南、资料信息、论坛信息、我的、跳转到后台、购物车、客服、管理员:首页、人人中心、研究生信息管理、学生管理、申请指南管理、资料信
|
数据可视化 数据挖掘 大数据
大数据可视化理论与案例分析|青训营笔记
通过本篇文章,可以帮助读者对数据可视化的概念和原理有一个整体的认知,并且介绍了数据可视化中常见的可视化图表的种类和使用场景。
277 0
大数据可视化理论与案例分析|青训营笔记
|
机器学习/深度学习 搜索推荐 算法
|
机器学习/深度学习 搜索推荐 算法
|
机器学习/深度学习 NoSQL 搜索推荐
【推荐算法】某小厂C面试题
MongoDB中的用户画像,来自mysql中的用户注册表和用户日志数据(如阅读量、点赞数、收藏数等)。 用户画像和物品画像,物料存入MongoDB中的SinaNews数据库中;这里我们用MongoDB是因为其文档类似于JSON对象,增删字段非常方便。
268 0
【推荐算法】某小厂C面试题
|
机器学习/深度学习 人工智能 算法
Interview:算法岗位面试—10.29下午上海某电子(偏传统ML算法,外企)数据结构算法+晚上国内某保险公司(偏AI算法,世界500强)技术面试之分类算法、回归算法、聚类算法等细节考察
Interview:算法岗位面试—10.29下午上海某电子(偏传统ML算法,外企)数据结构算法+晚上国内某保险公司(偏AI算法,世界500强)技术面试之分类算法、回归算法、聚类算法等细节考察