隐私计算论文合集「联邦学习系列」第2期

简介: 隐私计算论文合集「联邦学习系列」第2期


前言:

隐语awesome-PETs(PETs即Privacy-Enhancing Technologies ,隐私增强技术)精选业内优秀论文,按技术类型进行整理分类,旨在为隐私计算领域的学习研究者提供一个高质量的学习交流社区。awesome-pets包含:安全多方计算(MPC)、零知识证明(ZKP)、联邦学习(FL)、差分隐私(DP)、可信执行环境(TEE)、隐私求交(PSI)等系列主题论文!

继上期《多方安全计算》系列论文推荐活动小伙伴们参与热烈,社区收到了不少Paper留言。

本期继续带来联邦学习 (FL)系列论文推荐,更多主题Paper持续更新中ing~欢迎收藏项目。https://github.com/secretflow/secretflow/blob/main/docs/awesome-pets/awesome-pets.md

前往github提交PR,推荐“联邦学习”主题论文,私信隐语小助手SecretFlow01,参与抽奖活动!(中奖率超高呦~奖品见下文且推荐论文被合并的贡献者,还将在隐语官方repo中进行@,以肯定及感谢您在awesome-pets项目中的贡献成果。https://github.com/secretflow/secretflow/pulls



联邦学习系列论文

1、Survey

General

  • Federated machine learning: Concept and applications

  • Federated Learning in Mobile Edge Networks: A Comprehensive Survey
  • Advances and Open Problems in Federated Learning
  • Federated Learning: Challenges, Methods, and Future Directions

Security

  • A survey on security and privacy of federated learning
  • Threats to Federated Learning: A Survey
  • Vulnerabilities in Federated Learning

由于篇幅原因,还有更多论文未能一一列举,请访问github收藏!https://github.com/secretflow/secretflow/blob/main/docs/awesome-pets/papers/applications/ppml/fl/fl.md

2、Datasets

  • LEAF: A Benchmark for Federated Settings HomePage
  • UniMiB SHAR: a new dataset for human activity recognition using acceleration data from smartphones HomePage
  • The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems
  • Evaluation Framework For Large-scale Federated Learning
  • (*) PrivacyFL: A simulator for privacy-preserving and secure federated learning. MIT CSAIL.
  • Revocable Federated Learning: A Benchmark of Federated Forest


3、Efficiency

Quantization

  • Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients
  • Lazily Aggregated Quantized Gradient Innovation for Communication-Efficient Federated Learning
  • Communication Efficient Federated Learning with Adaptive Quantization
  • QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
  • DEED: A General Quantization Scheme for Communication Efficiency in Bits


4、Effectiveness

Model Aggregation

  • FedAvg: Communication-Efficient Learning of Deep Networks from Decentralized Data
  • LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
  • Federated Learning with Matched Averaging
  • Federated Learning of a Mixture of Global and Local Models
  • Faster On-Device Training Using New Federated Momentum Algorithm
  • FedDANE: A Federated Newton-Type Method
  • SCAFFOLD: Stochastic Controlled Averaging for Federated Learning

5、Incentive

Contribution Evaluation

  • Data Shapley: Equitable Valuation of Data for Machine Learning
  • A principled approach to data valuation for federated learning
  • Measure contribution of participants in federated learning
  • GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation in Federated Learning
  • Profit allocation for federated learning
  • Fedcoin: A peer-to-peer payment system for federated learning

Profit Allocation

  • Hierarchical Incentive Mechanism Design for Federated Machine Learning in Mobile networks
  • FAIR: Quality-Aware Federated Learning with Precise User Incentive and Model Aggregation
  • Incentive Mechanism for Horizontal Federated Learning Based on Reputation and Reverse Auction

6、Vertical FL

  • SecureBoost: A Lossless Federated Learning Framework
  • Parallel Distributed Logistic Regression for Vertical Federated Learning without Third-Party Coordinator
  • Entity Resolution and Federated Learning get a Federated Resolution.
  • Multi-Participant Multi-Class Vertical Federated Learning
  • A Communication-Efficient Collaborative Learning Framework for Distributed Features
  • Asymmetrical Vertical Federated Learning

7、Boosting

  • Practical Federated Gradient Boosting Decision Trees
  • Secureboost: A lossless federated learning framework
  • Large-scale Secure XGB for Vertical Federated Learning

8、Application

Natural language Processing

  • Federated pretraining and fine tuning of BERT using clinical notes from multiple silos
  • Federated Learning for Mobile Keyboard Prediction
  • Federated Learning for Keyword Spotting
  • generative sequence models (e.g., language models)
  • Federated User Representation Learning
  • Two-stage Federated Phenotyping and Patient Representation Learning

由于篇幅原因,还有更多论文未能一一列举,请访问github收藏!

https://github.com/secretflow/secretflow/blob/main/docs/awesome-pets/papers/applications/ppml/fl/fl.md

相关文章
|
机器学习/深度学习 人工智能 安全
隐语小课丨「论文研究」隐私保护纵向联邦图神经网络
隐语小课丨「论文研究」隐私保护纵向联邦图神经网络
220 0
|
前端开发
联邦学习之一(3)
联邦学习之一(3)
143 0
联邦学习之一(3)
|
存储 机器学习/深度学习 算法
一文概述联邦持续学习最新研究进展(3)
一文概述联邦持续学习最新研究进展
502 0
一文概述联邦持续学习最新研究进展(3)
|
机器学习/深度学习 数据采集 算法
「隐语小课」联邦学习之“隐私保护图神经网络”
「隐语小课」联邦学习之“隐私保护图神经网络”
304 0
|
机器学习/深度学习 算法 数据安全/隐私保护
「隐语小课」一种度量联邦学习中梯度泄露程度的方法
「隐语小课」一种度量联邦学习中梯度泄露程度的方法
387 0
|
机器学习/深度学习 数据采集 算法
「隐语小课」联邦学习之Non-IID问题
「隐语小课」联邦学习之Non-IID问题
356 0
|
机器学习/深度学习 算法 数据安全/隐私保护
「隐语小课」联邦学习之基本方法
「隐语小课」联邦学习之基本方法
110 0
|
存储 数据可视化 数据安全/隐私保护
一文概述联邦持续学习最新研究进展(2)
一文概述联邦持续学习最新研究进展
546 0
|
机器学习/深度学习 存储 人工智能
一文概述联邦持续学习最新研究进展(1)
一文概述联邦持续学习最新研究进展
560 0
|
存储 人工智能 分布式计算
大模型时代,一定要来讨论下数据与隐私
大模型时代,一定要来讨论下数据与隐私
181 0
下一篇
无影云桌面