强化学习:基于蒙特卡洛树和策略价值网络的深度强化学习五子棋

简介: 强化学习:基于蒙特卡洛树和策略价值网络的深度强化学习五子棋

实现了基于蒙特卡洛树和策略价值网络的深度强化学习五子棋(含码源)

  • 特点

    • 自我对弈
    • 详细注释
    • 流程简单
  • 代码结构

    • net:策略价值网络实现
    • mcts:蒙特卡洛树实现
    • server:前端界面代码
    • legacy:废弃代码
    • docs:其他文件
    • utils:工具代码
    • network.py:移植过来的网络结构代码
    • model_5400.pkl:移植过来的网络训练权重
    • train_agent.py:训练脚本
    • web_server.py:对弈服务脚本
    • web_server_demo.py:对弈服务脚本(移植网络)

1.1 流程

1.2策略价值网络

采用了类似ResNet的结构,加入了SPP模块。

(目前,由于训练太耗时间了,连续跑了三个多星期,才跑了2000多个自我对弈的棋谱,经过实验,这个策略网络的表现,目前还是不行,可能育有还没有训练充分)

同时移植了另一个开源的策略网络以及其训练权重(network.py、model_5400.pkl),用于进行仿真演示效果。

1.3 训练

根据注释调整train_agent.py文件,并运行该脚本

部分代码展示:


if __name__ == '__main__':

    conf = LinXiaoNetConfig()
    conf.set_cuda(True)
    conf.set_input_shape(8, 8)
    conf.set_train_info(5, 16, 1e-2)
    conf.set_checkpoint_config(5, 'checkpoints/v2train')
    conf.set_num_worker(0)
    conf.set_log('log/v2train.log')
    # conf.set_pretrained_path('checkpoints/v2m4000/epoch_15')

    init_logger(conf.log_file)
    logger()(conf)

    device = 'cuda' if conf.use_cuda else 'cpu'

    # 创建策略网络
    model = LinXiaoNet(3)
    model.to(device)

    loss_func = AlphaLoss()
    loss_func.to(device)

    optimizer = torch.optim.SGD(model.parameters(), conf.init_lr, 0.9, weight_decay=5e-4)
    lr_schedule = torch.optim.lr_scheduler.StepLR(optimizer, 1, 0.95)

    # initial config tree
    tree = MonteTree(model, device, chess_size=conf.input_shape[0], simulate_count=500)
    data_cache = TrainDataCache(num_worker=conf.num_worker)

    ep_num = 0
    chess_num = 0
    # config train interval
    train_every_chess = 18

    # 加载检查点
    if conf.pretrain_path is not None:
        model_data, optimizer_data, lr_schedule_data, data_cache, ep_num, chess_num = load_checkpoint(conf.pretrain_path)
        model.load_state_dict(model_data)
        optimizer.load_state_dict(optimizer_data)
        lr_schedule.load_state_dict(lr_schedule_data)
        logger()('successfully load pretrained : {}'.format(conf.pretrain_path))

    while True:
        logger()(f'self chess game no.{chess_num+1} start.')
        # 进行一次自我对弈,获取对弈记录
        chess_record = tree.self_game()
        logger()(f'self chess game no.{chess_num+1} end.')
        # 根据对弈记录生成训练数据
        train_data = generate_train_data(tree.chess_size, chess_record)
        # 将训练数据存入缓存
        for i in range(len(train_data)):
            data_cache.push(train_data[i])
        if chess_num % train_every_chess == 0:
            logger()(f'train start.')
            loader = data_cache.get_loader(conf.batch_size)
            model.train()
            for _ in range(conf.epoch_num):
                loss_record = []
                for bat_state, bat_dist, bat_winner in loader:
                    bat_state, bat_dist, bat_winner = bat_state.to(device), bat_dist.to(device), bat_winner.to(device)
                    optimizer.zero_grad()
                    prob, value = model(bat_state)
                    loss = loss_func(prob, value, bat_dist, bat_winner)
                    loss.backward()
                    optimizer.step()
                    loss_record.append(loss.item())
                logger()(f'train epoch {ep_num} loss: {sum(loss_record) / float(len(loss_record))}')
                ep_num += 1
                if ep_num % conf.checkpoint_save_every_num == 0:
                    save_checkpoint(
                        os.path.join(conf.checkpoint_save_dir, f'epoch_{ep_num}'),
                        ep_num, chess_num, model.state_dict(), optimizer.state_dict(), lr_schedule.state_dict(), data_cache
                    )
            lr_schedule.step()
            logger()(f'train end.')
        chess_num += 1
        save_chess_record(
            os.path.join(conf.checkpoint_save_dir, f'chess_record_{chess_num}.pkl'),
            chess_record
        )
        # break

    pass

1.4 仿真实验

根据注释调整web_server.py文件,加载所用的预训练权重,并运行该脚本

浏览器打开网址:http://127.0.0.1:8080/ 进行对弈

部分代码展示

# 用户查询机器落子状态
@app.route('/state/get/<state_id>', methods=['GET'])
def get_state(state_id):
    global state_result
    state_id = int(state_id)
    state = 0
    chess_state = None
    if state_id in state_result.keys() and state_result[state_id] is not None:
        state = 1
        chess_state = state_result[state_id]
        state_result[state_id] = None
    ret = {
        'code': 0,
        'msg': 'OK',
        'data': {
            'state': state,
            'chess_state': chess_state
        }
    }
    return jsonify(ret)


# 游戏开始,为这场游戏创建蒙特卡洛树
@app.route('/game/start', methods=['POST'])
def game_start():
    global trees
    global model, device, chess_size, simulate_count
    tree_id = random.randint(1000, 100000)
    trees[tree_id] = MonteTree(model, device, chess_size=chess_size, simulate_count=simulate_count)
    ret = {
        'code': 0,
        'msg': 'OK',
        'data': {
            'tree_id': tree_id
        }
    }
    return jsonify(ret)


# 游戏结束,销毁蒙特卡洛树
@app.route('/game/end/<tree_id>', methods=['POST'])
def game_end(tree_id):
    global trees
    tree_id = int(tree_id)
    trees[tree_id] = None
    ret = {
        'code': 0,
        'msg': 'OK',
        'data': {}
    }
    return ret


if __name__ == '__main__':
    app.run(
        '0.0.0.0',
        8080
    )

1.5 仿真实验(移植网络)

运行脚本:python web_server_demo.py

浏览器打开网址:http://127.0.0.1:8080/ 进行对弈

码源链接见文末

码源链接

更多优质内容请关注公号&知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关文章
|
2月前
|
监控 安全 网络协议
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
324 1
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
|
2月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
185 4
|
4月前
|
安全 KVM 虚拟化
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
214 2
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
|
4月前
|
机器学习/深度学习 数据采集 运维
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
匹配网络是一种基于度量的元学习方法,通过计算查询样本与支持集样本的相似性实现分类。其核心依赖距离度量函数(如余弦相似度),并引入注意力机制对特征维度加权,提升对关键特征的关注能力,尤其在处理复杂或噪声数据时表现出更强的泛化性。
214 6
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
|
3月前
|
监控 安全 Devops
DevOps 流水线的网络安全盲区与防御策略
在软件研发中,DevOps流水线加速了开发与交付,但也带来严重安全风险。自动化节点和第三方集成成为攻击入口,凭证泄露、供应链渗透、配置错误和依赖混乱等问题频发。企业需构建全流程安全体系,嵌入自动化安全策略,强化访问控制与监控,提升全员安全意识,实现效率与安全的协同发展。
410 1
|
10月前
|
编解码 异构计算
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
703 10
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
10月前
|
人工智能 安全 网络安全
网络安全领导者有效缓解团队倦怠的四步策略
网络安全领导者有效缓解团队倦怠的四步策略
|
5月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
137 4
|
10月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
437 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
9月前
|
缓存 边缘计算 安全
阿里云CDN:全球加速网络的实践创新与价值解析
在数字化浪潮下,用户体验成为企业竞争力的核心。阿里云CDN凭借技术创新与全球化布局,提供高效稳定的加速解决方案。其三层优化体系(智能调度、缓存策略、安全防护)确保低延迟和高命中率,覆盖2800+全球节点,支持电商、教育、游戏等行业,帮助企业节省带宽成本,提升加载速度和安全性。未来,阿里云CDN将继续引领内容分发的行业标准。
502 7