【Copula】考虑风光联合出力和相关性的Copula场景生成(Matlab代码实现)

简介: 【Copula】考虑风光联合出力和相关性的Copula场景生成(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

参考文献:


f41f2e206b5dc0565d7bde3a8ac365b0.png


风光等可再生能源出力的不确定性和相关性给系统的设计带来了极大的复杂性,若忽略这些因


素,势必会在系统规划阶段引入次优决策风险[24]。因此,在确定系统最佳配置方案时,必须要考虑风光出力的不确定性和相关性。 Copula 函数可以描述随机变量间的相关性,是把随机变量的联合分布函数与各自的边缘分布函数相连接的函数。其主要包括椭圆分布族 Copula函数(Normal-Copula、t-Copula)和阿基米德分布族Copula 函 数 [25](Frank-Copula 、 Gumbel-Copula 、Clayton-Copula)。Copula 函数的选取对刻画风光出力的相关性至关重要,然而选择何种 Copula 函数取决于规划区域的风光出力特性。由于 t-Copula 对多维随机变量拟合极为耗时且 Gumbel-Copula 形式复杂,因此本文仅考虑其余 3 种 Copula 函数。


为了选择最佳的 Copula 函数拟合风光出力特性,引入 Spearman 秩相关系数[26]、Kendall 秩相关系数及欧式距离等指标并计算风光出力的 Empirical (经验)-Copula 函数[27],具体详见文献[26-27]。所选Copula 函数的秩相关系数越接近 Empirical-Copula函数的秩相关系数,且与其欧式距离较小者认为是最佳的。本文选取规划区 2011 年全年风机与光伏标幺化出力数据,见附录 A 图 A1,分别用 Normal Copula、Frank-Copula、Clayton-Copula 函数拟合风光出力并计算风光出力的 Empirical-Copula 函数,求得其秩相关系数及与 Empirical-Copula 函数的欧式距离如表 1 所示。


c8920ab0afbe2bf9cb11a9336df8f9aa.png


Sklar在1959年提出的Sklar定理指出,一个N维分量的联合分布函数可以由这N个变量的边缘分布和1个 Copula函数来描述[11] ,即Copula函数可以将多变量的联合分布与这N个变量的边缘分布连接起来,因此也称为“连接函数”。Sklar定理表达式如下:


dc50f0971d8690481955778aeee0ce71.png


Sklar定理证明了Copula函数的存在性,描述了多元联合分布密度函数与Copula密度函数的关系,为建模奠定了基础。


Copula函数主要分为椭圆函数族(Ellipse-Copula)和阿基米德函数族(Archimedean-Copula)2种类型。其中,椭圆函数族包括正态Copula函数和t-Copula函数,阿基米德函数族中常用的有Gumbel-Copula函数、Clayton-Copula函数和Frank-Copula函数[12] 。不同类型的Copula函数具有不同的函数结构,因其尾部特征的差异适用于刻画不同类型的相依关系,具体特性如表1 所示。


a1b56a4aeb76d08d38fc986f80d6a740.png


来源:


ac9b0e75b6fcecadba3d4d056a9f4e9a.png


上节所述5种Copula函数适用于描述具有尖峰厚尾特性的数据,首先对风电场数据进行分析,统计同一地区2个典型风电场1个月的数据,分布特性如图1所示。图1中横坐标代表出力标幺值,纵坐标代表概率密度。由图1可知,风电场输出功率统计数据也具有尖峰厚尾的特性,即大量数据集中在某一区间,频数特别高,而其他数据广泛分布于各个区间,范围广。因此Copula函数及建模方法适用于风电场出力数据。为了对同一地区2个风电场联合出力及相关性有一个直观的认识,便于分析,作2个风电场的联合分布统计图,如图2所示。


906103d3a36df314a64ab80c5f9ec09c.png


由图2可知,大量数据集中在主对角线上,同一地区2个风电场出力呈现出很强的正相关性,依据这种相关特性建立Copula模型可以有效描述同一地区2个风电场的出力特性及其相关性。


aa087b0b9200471596ab49039ed4b314.png


📚2 运行结果

4671e24d0184b4babe1edf2d2d919396.png

accca2523d0863c67349d85de951395e.png

6d0e3fc5500181e53ca0961cccc0acec.png

a9136fece2d4072184d3b385f5ca6f69.png

b74f9a0d3ac028c8283f3cba99637721.png

452ec45e75b06996eee89aba65737d4d.png

736e979b49b396f5d9d190ea0f891a25.png


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]林顺富,刘持涛,李东东等.考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J].中国电机工程学报,2020,40(05):1409-1421.DOI:10.13334/j.0258-8013.pcsee.190275.


[2]宋宇,李涵.基于核密度估计和Copula函数的风、光出力场景生成[J].电气技术,2022,23(01):56-63.


[3]段偲默,苗世洪,李力行,韩佶,晁凯云,范志华.基于Copula理论的风光联合出力典型场景生成方法[J].供用电,2018,35(07):13-19.DOI:10.19421/j.cnki.1006-6357.2018.07.003.


🌈4 Matlab代码实现


相关文章
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
110 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
7月前
|
算法 调度
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
7月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章