清华系面壁智能开源中文多模态大模型VisCPM :支持对话文图双向生成,吟诗作画能力惊艳

简介: 清华系面壁智能开源中文多模态大模型VisCPM :支持对话文图双向生成,吟诗作画能力惊艳


再现破壁式成就,VisCPM强势来袭!


2020 年 12 月发布的 CPM-1 是国内首个中文大模型 ;2022 年 9 月发布的 CPM-Ant 仅微调 0.06% 参数就能超越全参数微调效果;2023 年 5 月发布的 WebCPM 是 中文首个基于搜索的问答开源模型。CPM-Bee 百亿大模型是团队最新发布的基座模型,中文能力登顶权威榜单 ZeroCLUE,英文能力打平 LLaMA。


屡屡作出破壁性成就,CPM 系列大模型一直在引领国产大模型攀登高峰,最近发布的 VisCPM 是又一次证明!VisCPM 是由面壁智能、清华大学 NLP 实验室和知乎联合开源在 OpenBMB 的多模态大模型系列,其中 VisCPM-Chat 模型支持中英双语的多模态对话能力,VisCPM-Paint 模型支持文到图生成能力,评测显示 VisCPM 在中文多模态开源模型中达到最佳水平。


VisCPM 基于百亿参数基座模型 CPM-Bee 训练,融合视觉编码器(Q-Former 和视觉解码器(Diffusion-UNet)以支持视觉信号的输入和输出。得益于 CPM-Bee 底座优秀的双语能力,VisCPM 可以仅通过英文多模态数据预训练,泛化实现优秀的中文多模态能力。



VisCPM简易架构图


我们来详细看看 VisCPM-Chat 和 VisCPM-Paint 到底牛在哪里。



VisCPM 链接https://github.com/OpenBMB/VisCPM


VisCPM-Chat 支持面向图像进行中英双语多模态对话。该模型使用 Q-Former 作为视觉编码器,使用 CPM-Bee(10B)作为语言交互基底模型,并通过语言建模训练目标融合视觉和语言模型。模型训练包括预训练和指令精调两阶段。


团队使用约 100M 高质量英文图文对数据 对 VisCPM-Chat 进行了预训练,数据包括 CC3M、CC12M、COCO、Visual Genome、Laion 等。在预训练阶段,语言模型参数保持固定,仅更新 Q-Former 部分参数,以支持大规模视觉 - 语言表示的高效对齐。


之后团队对 VisCPM-Chat 进行了指令精调,采用 LLaVA-150K 英文指令精调数据,并混合相应翻译后的中文数据对模型进行指令精调,以对齐模型多模态基础能力和用户使用意图。在指令精调阶段,他们更新了全部模型参数,以提升指令精调数据的利用效率。


有趣的是,团队发现即使仅采用英文指令数据进行指令精调,模型也可以理解中文问题,但仅能用英文回答。这表明模型的多语言多模态能力已经得到良好的泛化。在指令精调阶段进一步加入少量中文翻译数据,就可以将模型回复语言和用户问题语言对齐。


团队在 LLaVA 英文测试集和翻译的中文测试集对模型进行了评测,该评测基准考察模型在开放域对话、图像细节描述、复杂推理方面的表现,并使用 GPT-4 进行打分。可以观察到,VisCPM-Chat 在中文多模态能力方面取得了最佳的平均性能,在通用域对话和复杂推理上表现出色,同时也表现出了不错的英文多模态能力。


VisCPM-Chat 提供了两个模型版本,分别为 VisCPM-Chat-balance 和 VisCPM-Chat-zhplus,前者在英文和中文两种语言上的能力较为平衡,后者在中文能力上更加突出。两个模型在指令精调阶段使用的数据相同,VisCPM-Chat-zhplus 在预训练阶段额外加入了 20M 清洗后的原生中文图文对数据和 120M 翻译到中文的图文对数据。



下面是 VisCPM-Chat 的多模态对话能力展示,不仅能识别具体地区的地图,还能读懂涂鸦画和电影海报,甚至认识星巴克的 logo。而且,中英文双语都很溜!



再来看 VisCPM-Paint ,它支持中英双语的文到图生成。该模型使用 CPM-Bee(10B)作为文本编码器,使用 UNet 作为图像解码器,并通过扩散模型训练目标融合语言和视觉模型。


在训练过程中,语言模型参数始终保持固定。使用 Stable Diffusion 2.1 的 UNet 参数初始化视觉解码器,并通过逐步解冻其中关键的桥接参数将其与语言模型融合:首先训练文本表示映射到视觉模型的线性层,然后进一步解冻 UNet 的交叉注意力层。该模型在 Laion 2B 英文图文对数据上进行了训练。


与 VisCPM-Paint 类似,得益于基座模型 CPM-Bee 的双语能力,VisCPM-Paint 可以仅通过英文图文对训练,泛化实现良好的中文文到图生成能力,达到中文开源模型的最佳效果通过进一步加入 20M 清洗后的原生中文图文对数据,以及 120M 翻译到中文的图文对数据,模型的中文文到图生成能力获得进一步提升。同样,VisCPM-Paint 有 balance 和 zhplus 两个不同的版本。他们在标准图像生成测试集 MSCOCO 上采样了 3 万张图片,计算了常用评估图像生成指标 FID (Fréchet Inception Distance) 评估生成图片的质量。



VisCPM-Paint 模型中分别输入 “海上生明月,天涯共此时,唯美风格,抽象风格”“人闲桂花落,月静春山空” 两条 prompts,生成了以下两张图片:


(生成效果稳定性仍有提升空间)


相当惊艳,可以说精准把握了古诗词的意境,以后读不懂诗句就直接生成个图片来理解!如果应用在设计上,可以节省一大笔人力。不仅能 “作画”,用上 VisCPM-Chat,还能 “吟诗”:用图片反向检索诗句。比如能用李白的诗描绘黄河的景象并作解读,在面对中秋月夜时还能用苏轼的《水调歌头》借景抒情。



VisCPM 不仅生成效果好,下载版本设计考虑周到,安装和使用也十分简易。


VisCPM提供不同中英文能力的版本


安装步骤


VisCPM 提供不同中英文能力的模型版本供大家下载选择,安装步骤简单,在使用中可以通过几行代码实现多模态对话,还在代码中默认开启了对输入文本和输出图片的安全检查。(具体教程详见 README)未来团队还会将 VisCPM 整合到 huggingface 代码框架中,并且会陆续完善安全模型、 支持快速网页部署、 支持模型量化功能、支持模型微调等功能,坐等更新!


值得一提的是,VisCPM 系列模型非常欢迎个人使用和研究用途。如需将模型用于商业用途,还可以联系 cpm@modelbest.cn 洽谈商业授权事宜。


传统模型专注处理单一模态数据,现实世界中的信息往往是多模态的,多模态大模型提升了人工智能系统的感知交互能力,为 AI 解决现实世界中复杂的感知和理解任务带来了新的机遇。不得不说,清华系大模型公司面壁智能研发能力强大,联合发布的多模态大模型 VisCPM 实力强大、表现惊艳,期待他们后续的成果发布!


相关文章
|
28天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
78 2
|
6月前
|
人工智能 达摩院 并行计算
中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽
君不言语音识别技术则已,言则必称Whisper,没错,OpenAi开源的Whisper确实是世界主流语音识别技术的魁首,但在中文领域,有一个足以和Whisper相颉顽的项目,那就是阿里达摩院自研的FunAsr。 FunAsr主要依托达摩院发布的Paraformer非自回归端到端语音识别模型,它具有高精度、高效率、便捷部署的优点,支持快速构建语音识别服务,最重要的是,FunASR支持标点符号识别、低语音识别、音频-视觉语音识别等功能,也就是说,它不仅可以实现语音转写,还能在转写后进行标注,一石二鸟。
中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽
|
人工智能 API C++
【AI绘画大比拼】通义万相VS文心一格:探索十种风格下的绘画生成差异!
近日,通义大模型家族的新成员——通义万相已在人工智能大会上亮相。其中,通义万相的强大的“文生图”功能,不禁让我想到了去年八月由百度依托飞桨、文心大模型的技术创新推出的“AI作画”首款产品——文心一格。 那么,在类似的Prompt下,两款产品的表现将会如何呢?今天就让我们就十种风格下二者生成图像的表现力,来看看这两款产品的差异。
|
1月前
|
人工智能 弹性计算 自然语言处理
|
30天前
|
前端开发 算法 测试技术
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
本文对比测试了通义千文、文心一言、智谱和讯飞等多个国产大模型在处理基础计数问题上的表现,特别是通过链式推理(COT)提示的效果。结果显示,GPTo1-mini、文心一言3.5和讯飞4.0Ultra在首轮测试中表现优秀,而其他模型在COT提示后也能显著提升正确率,唯有讯飞4.0-Lite表现不佳。测试强调了COT在提升模型逻辑推理能力中的重要性,并指出免费版本中智谱GLM较为可靠。
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
|
1月前
|
自然语言处理 语音技术
交大x-lance跨媒体语言智能实验室等联合开源F5-TTS!零样本语音复刻,生成流畅,情感丰富!
上海交大x-lance跨媒体语言智能实验室联合剑桥大学、吉利汽车研究院(宁波)公司开源了一种基于流匹配的扩散变换器(Diffusion Transformer,DiT)的完全非自回归TTS模型-F5-TTS。
|
2月前
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
70 7
|
5月前
|
机器人
北大推出全新机器人多模态大模型!面向通用和机器人场景的高效推理和操作
【6月更文挑战第29天】北京大学研发的RoboMamba是新型机器人多模态大模型,融合Mamba SSM的高效推理与视觉编码器,提升复杂任务处理能力。通过微调策略,仅用少量参数即可快速习得操作技能,实现在通用及机器人场景的高效运行,推理速度提升7倍。尽管面临泛化和可解释性挑战,RoboMamba展示了多模态模型的新潜力。[论文链接:](https://arxiv.org/abs/2406.04339)
85 1
|
5月前
|
人工智能 自然语言处理 决策智能
超长小说可以用AI翻译了,新型多智能体协作系统媲美人工翻译
【6月更文挑战第11天】研究人员开发了一种基于大型语言模型的多智能体协作系统TransAgents,用于文学翻译,挑战复杂的文学文本翻译。通过单语人类偏好和双语LLM偏好评估,系统在保留文学风格和表达上表现出色,尤其在需要领域知识的文本中。然而,系统在捕捉文学翻译的细微差别、文化特定元素和长文本翻译效率上仍有局限性。相关论文链接:https://arxiv.org/abs/2405.11804
157 1
|
JSON 编解码 物联网
大规模语言LLaVA:多模态GPT-4智能助手,融合语言与视觉,满足用户复杂需求
大规模语言LLaVA:多模态GPT-4智能助手,融合语言与视觉,满足用户复杂需求
大规模语言LLaVA:多模态GPT-4智能助手,融合语言与视觉,满足用户复杂需求