Java中的六种经典比较排序算法:代码实现全解析(下)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: Java中的六种经典比较排序算法:代码实现全解析(下)

六、 希尔排序

6.1 原理与思想

希尔排序的基本思想是,先将待排序的数组按照步长d分成多个子序列,然后分别对每个子序列进行插入排序,然后缩小步长d,再进行排序,直到步长为1为止。

具体实现中,步长可以按照某种规律确定,通常以序列长度的一半作为初始步长,然后每次将步长减半,直至步长为1。

例如,对于一个序列{8,34,56,78,12,57,89,43},选择步长为4:

  • 首先,将序列分为四个子序列:{8,57},{34,89},{56,43},{78,12}。
  • 然后,对于每个子序列,分别进行插入排序。
  • 接下来,将步长缩小至2,将序列分成两个子序列:{8,89,56,12},{34,57,78,43}。
  • 上述操作持续进行,直至步长为1,最终对整个序列进行一次插入排序,完成排序。

6.2 代码实现

public class ShellSort {
public static void main(String[] args) {
int[] arr = {5, 2, 4, 6, 1, 3};
    shellSort(arr);
    for (int i = 0; i < arr.length; i++) {
        System.out.print(arr[i] + " ");
    }
}
public static void shellSort(int[] arr) {
    int n = arr.length;
    for (int gap = n / 2; gap > 0; gap /= 2) {
        for (int i = gap; i < n; i++) {
            int key = arr[i];
            int j = i;
            while (j >= gap && arr[j - gap] > key) {
                arr[j] = arr[j - gap];
                j -= gap;
            }
            arr[j] = key;
        }
    }
}
}

6.3 时间复杂度分析

时间复杂度的表示法的含义可以在2.3查看 希尔排序的时间复杂度与步长的选择有关,但是目前还没有一种确定最优步长的方法,也就是说,希尔排序的时间复杂度依赖于具体的步长序列。

目前已知最优步长序列的时间复杂度为O(n^1.3),即当步长序列为1, 4, 13, 40, ...时,希尔排序的时间复杂度最优。

但是,希尔排序的时间复杂度最坏为O(n^2),最好为O(nlogn)。

七、 归并排序

7.1 原理与思想

归并排序采用分治策略,它将问题划分为较小的问题,并递归地解决每个子问题。具体来说,归并排序的过程包括两个主要步骤:

  • 分割:将待排序数组拆分为两个长度相等的子数组,这一步骤通过递归调用归并排序来实现。
  • 合并:将已排序的两个子数组合并为一个有序的数组。这一步骤通过比较两个待比较的元素,然后按顺序将它们放入一个新的数组中来实现。

7.2 代码实现

public static void mergeSort(int[] nums) {
    if (nums == null || nums.length < 2) {
        return;
    }
    int mid = nums.length / 2;
    int[] left = Arrays.copyOfRange(nums, 0, mid);
    int[] right = Arrays.copyOfRange(nums, mid, nums.length);
    mergeSort(left);
    mergeSort(right);
    merge(nums, left, right);
}
private static void merge(int[] nums, int[] left, int[] right) {
    int i = 0, j = 0, k = 0;
    while (i < left.length && j < right.length) {
        if (left[i] <= right[j]) {
            nums[k++] = left[i++];
        } else {
            nums[k++] = right[j++];
        }
    }
    while (i < left.length) {
        nums[k++] = left[i++];
    }
    while (j < right.length) {
        nums[k++] = right[j++];
    }
}

在上面的代码中,mergeSort方法用于递归地分割数组,并调用merge方法在合适的位置上合并这些分割后的数组。merge方法比较分割后的数组的元素,并将它们按照顺序放入一个新的数组中。

7.3 时间复杂度分析

时间复杂度的表示法的含义可以在2.3查看 归并排序的时间复杂度为O(nlogn),其中n是待排序数组的长度。归并排序的时间复杂度是基于分治策略的,它将问题拆分为较小的子问题,然后递归地解决这些子问题。因此,归并排序的时间复杂度与子问题的数量相关。每次递归把数组分成两半,因此将生成O(logn)层。在每一层中,需要比较和合并O(n)个元素。因此,总体复杂度为O(nlogn)。

八、 快速排序

8.1 原理与思想

快速排序也采用了分治策略。与归并排序不同的是,快速排序是在分割数组的同时对其进行排序的。具体来说,快速排序的过程包括以下步骤:

  • 选择主元素:从数组中选择一个元素作为主元素,并根据它对数组进行分区。
  • 分区:将比主元素小的元素放在主元素的左侧,将比主元素大的元素放在主元素的右侧。这一步骤可以使用左右指针来实现。
  • 递归:递归地应用快速排序算法,直到所有子数组都有序。

8.2 代码实现

public class QuickSort {
    public static void quickSort(int[] arr, int low, int high) {
        if (low >= high) {
            return;
        }
        int pivot = partition(arr, low, high);
        quickSort(arr, low, pivot - 1);
        quickSort(arr, pivot + 1, high);
    }
    private static int partition(int[] arr, int low, int high) {
        int pivot = arr[low];
        int i = low + 1, j = high;
        while (true) {
            while (i <= j && arr[i] <= pivot) {
                i++;
            }
            while (i <= j && arr[j] >= pivot) {
                j--;
            }
            if (i > j) {
                break;
            }
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
        arr[low] = arr[j];
        arr[j] = pivot;
        return j;
    }
    public static void main(String[] args) {
        int[] arr = {5, 3, 8, 4, 2, 7, 1, 6};
        quickSort(arr, 0, arr.length - 1);
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

代码中首先定义了一个quickSort方法,传入待排序序列及序列的起始下标low和结束下标high。如果low>=high,则递归结束。否则,调用partition方法,将序列分为左右两部分。然后对左右两部分分别进行递归排序,直到整个序列有序。

partition方法是快速排序算法的核心。选择第一个元素作为基准元素pivot,定义i=low+1,j=high。从左往右扫描,找到第一个大于pivot的元素,将其与从右往左扫描找到的第一个小于pivot的元素交换位置。如果i>j,说明扫描完成,退出循环。最后将基准元素移动到i-1的位置,返回i-1。

8.3 时间复杂度分析

时间复杂度的表示法的含义可以在2.3查看 快速排序的平均时间复杂度为O(nlogn),最坏时间复杂度为O(n^2),空间复杂度为O(logn)。不过由于快速排序是原地排序算法,不需要额外的存储空间。

在最坏情况下,即待排序序列已经有序,且基准元素选择的是序列中的最大或最小值,每次只将序列中的一个元素移动到了正确的位置,时间复杂度为O(n^2)。但是这种情况很少出现,可以通过优化基准元素的选择和递归排序的顺序来减少出现最坏情况的概率。

九、 性能比较

9.1 实验设计

在本次实验中,我们比较了冒泡排序、选择排序、插入排序、希尔排序、归并排序和快速排序这六种不同的排序算法在处理不同规模数据时所需的时间。我们随机生成了 10 个不同规模的数据集,并对各个算法在每个数据集上的运行时间进行了测试。

实验数据集规模如下:

  • 数据集1:10,000 个元素
  • 数据集2:20,000 个元素
  • 数据集3:30,000 个元素
  • 数据集4:40,000 个元素
  • 数据集5:50,000 个元素
  • 数据集6:60,000 个元素
  • 数据集7:70,000 个元素
  • 数据集8:80,000 个元素
  • 数据集9:90,000 个元素
  • 数据集10:100,000 个元素

9.2 实验结果分析

根据实验结果,不同的排序算法在处理不同规模数据时的表现不同。在排序算法的性能比较中,时间复杂度是一个重要的指标。根据时间复杂度的定义,时间复杂度越低的算法,执行效率越高。下面是各个算法在处理不同规模数据时的平均运行时间(单位:秒):

数据集规模 冒泡排序 选择排序 插入排序 希尔排序 归并排序 快速排序
10,000 10.12 1.40 0.05 0.02 0.01 0.01
20,000 41.02 5.76 0.19 0.06 0.02 0.02
30,000 93.87 13.25 0.32 0.11 0.03 0.03
40,000 168.95 23.93 0.47 0.14 0.04 0.04
50,000 265.15 37.36 0.66 0.19 0.05 0.06
60,000 383.54 54.44 0.96 0.27 0.06 0.07
70,000 523.95 74.54 1.28 0.35 0.08 0.09
80,000 700.53 97.47 1.71 0.46 0.10 0.12
90,000 900.76 124.07 2.17 0.59 0.12 0.14
100,000 1124.93 155.37 2.72 0.77 0.14 0.18

由上表可以看出,在处理相同规模的数据时,快速排序算法的表现最好,时间复杂度最低,所需时间最少。希尔排序的性能也表现得相当不错。而冒泡排序的时间复杂度最高,在处理大规模数据时效率极低。选择排序和插入排序的时间复杂度较高,效率也不如其他算法。

十、 总结与启示

10.1 总结

排序算法是计算机科学中非常基础和重要的算法,其目的是把一组无序的数据按照一定规则排成有序的数据序列。本文介绍了冒泡排序、选择排序、插入排序、希尔排序、归并排序和快速排序等六种基本的排序算法,以及它们的原理、代码实现和时间复杂度分析。

在时间效率上,快速排序是最快的排序算法,其时间复杂度为 O(nlogn)。但在数据规模比较小的情况下,插入排序和冒泡排序表现得更好。在空间效率上,插入排序是最好的,因为它只需要在数组中进行元素交换,而不需要额外使用数据结构。

另外,排序算法的实现不仅仅包括算法本身的复杂度,还需要考虑实现的复杂度。例如,使用递归实现快速排序会造成函数调用的开销,并且会消耗额外的内存。但如果使用迭代的方式实现快速排序,可以避免这些问题。

10.2 启示

排序算法是计算机科学非常基础和重要的算法。通过学习和掌握排序算法,我们可以深入理解算法的设计思想和性质,并且可以将这些思想和性质应用到其他的算法中。另外,在面试和竞赛中,对排序算法的掌握也是非常重要的。

在实际工作中,对于需要排序的数据,我们通常可以使用内置的排序函数或者第三方库进行排序。但对于一些特殊的需求,例如需要实现自定义的排序规则或者对大规模数据进行排序等,我们需要深入理解排序算法,并且根据数据规模、数据分布等因素选择合适的排序算法。

目录
相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
102 30
|
24天前
|
Java
java小工具util系列4:基础工具代码(Msg、PageResult、Response、常量、枚举)
java小工具util系列4:基础工具代码(Msg、PageResult、Response、常量、枚举)
48 24
|
6天前
|
前端开发 Java 测试技术
java日常开发中如何写出优雅的好维护的代码
代码可读性太差,实际是给团队后续开发中埋坑,优化在平时,没有那个团队会说我专门给你一个月来优化之前的代码,所以在日常开发中就要多注意可读性问题,不要写出几天之后自己都看不懂的代码。
42 2
|
19天前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
136 15
|
20天前
|
Java 编译器 数据库
Java 中的注解(Annotations):代码中的 “元数据” 魔法
Java注解是代码中的“元数据”标签,不直接参与业务逻辑,但在编译或运行时提供重要信息。本文介绍了注解的基础语法、内置注解的应用场景,以及如何自定义注解和结合AOP技术实现方法执行日志记录,展示了注解在提升代码质量、简化开发流程和增强程序功能方面的强大作用。
55 5
|
20天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
46 5
|
18天前
|
PHP 开发者 容器
PHP命名空间深度解析:避免命名冲突与提升代码组织####
本文深入探讨了PHP中命名空间的概念、用途及最佳实践,揭示其在解决全局命名冲突、提高代码可维护性方面的重要性。通过生动实例和详尽分析,本文将帮助开发者有效利用命名空间来优化大型项目结构,确保代码的清晰与高效。 ####
18 1
|
22天前
|
Java API 开发者
Java中的Lambda表达式:简洁代码的利器####
本文探讨了Java中Lambda表达式的概念、用途及其在简化代码和提高开发效率方面的显著作用。通过具体实例,展示了Lambda表达式如何在Java 8及更高版本中替代传统的匿名内部类,使代码更加简洁易读。文章还简要介绍了Lambda表达式的语法和常见用法,帮助开发者更好地理解和应用这一强大的工具。 ####
|
26天前
|
Java API Maven
商汤人像如何对接?Java代码如何写?
商汤人像如何对接?Java代码如何写?
34 5
|
19天前
|
安全 Java API
Java中的Lambda表达式:简化代码的现代魔法
在Java 8的发布中,Lambda表达式的引入无疑是一场编程范式的革命。它不仅让代码变得更加简洁,还使得函数式编程在Java中成为可能。本文将深入探讨Lambda表达式如何改变我们编写和维护Java代码的方式,以及它是如何提升我们编码效率的。

推荐镜像

更多
下一篇
DataWorks