应用torchinfo计算网络的参数量

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 应用torchinfo计算网络的参数量

1 问题

定义好一个VGG11网络模型后,我们需要验证一下我们的模型是否按需求准确无误的写出,这时可以用torchinfo库中的summary来打印一下模型各层的参数状况。这时发现表中有一个param以及在经过两个卷积后参数量(param)没变,出于想知道每层的param是怎么计算出来,于是对此进行探究。


2 方法

1、网络中的参数量(param)是什么?

param代表每一层需要训练的参数个数,在全连接层是突触权重的个数,在卷积层是卷积核的参数的个数。


2、网络中的参数量(param)的计算。

卷积层计算公式:Conv2d_param=(卷积核尺寸*输入图像通道+1)*卷积核数目

池化层:池化层不需要参数。

全连接计算公式:Fc_param=(输入数据维度+1)*神经元个数


3、解释一下图表中vgg网络的结构和组成。vgg11的网络结构即表中的第一列:

conv3-64→maxpool→conv3-128→maxpool→conv3-256→conv3-256→maxpool→conv3-512→conv3-512→maxpool→conv3-512→conv3-512→maxpool→FC-4096→FC-4096→FC-1000→softmax。


4、代码展示

import torch
from torch import nn
from torchinfo import summary
class MyNet(nn.Module):
   #定义哪些层
   def __init__(self) :
       super().__init__()
       #(1)conv3-64
       self.conv1 = nn.Conv2d(
           in_channels=1, #输入图像通道数
           out_channels=64,#卷积产生的通道数(卷积核个数)
           kernel_size=3,#卷积核尺寸
           stride=1,
           padding=1       #不改变特征图大小
       )  
       self.max_pool_1 = nn.MaxPool2d(2)
       #(2)conv3-128
       self.conv2 = nn.Conv2d(
           in_channels=64,
           out_channels=128,
           kernel_size=3,
           stride=1,
           padding=1
       )
       self.max_pool_2 = nn.MaxPool2d(2)
       #(3)conv3-256
       self.conv3 = nn.Conv2d(
           in_channels=128,
           out_channels=256,
           kernel_size=3,
           stride=1,
           padding=1
       )
       self.conv4 = nn.Conv2d(
           in_channels=256,
           out_channels=256,
           kernel_size=3,
           stride=1,
           padding=1
       )
       self.max_pool_3 = nn.MaxPool2d(2)
       #(4)conv3-512
       self.conv5 = nn.Conv2d(
           in_channels=256,
           out_channels=512,
           kernel_size=3,
           stride=1,
           padding=1
       )
       self.conv6 = nn.Conv2d(
           in_channels=512,
           out_channels=512,
           kernel_size=3,
           stride=1,
           padding=1
       )
       self.max_pool_4 = nn.MaxPool2d(2)
       #(5)conv3-512
       self.conv7 = nn.Conv2d(
           in_channels=512,
           out_channels=512,
           kernel_size=3,
           stride=1,
           padding=1
       )
       self.conv8 = nn.Conv2d(
           in_channels=512,
           out_channels=512,
           kernel_size=3,
           stride=1,
           padding=1
       )
       self.max_pool_5 = nn.MaxPool2d(2)
       self.fc1 = nn.Linear(in_features=7*7*512,out_features=4096)
       self.fc2 = nn.Linear(in_features=4096,out_features=4096)
       self.fc3 = nn.Linear(in_features=4096,out_features=1000)
   #计算流向
   def forward(self,x):
       x = self.conv1(x)
       x = self.max_pool_1(x)
       x = self.conv2(x)
       x = self.max_pool_2(x)
       x = self.conv3(x)
       x = self.conv4(x)
       x = self.max_pool_3(x)
       x = self.conv5(x)
       x = self.conv6(x)
       x = self.max_pool_4(x)
       x = self.conv7(x)
       x = self.conv8(x)
       x = self.max_pool_5(x)
       x = torch.flatten(x,1)  #[B,C,H,W]从C开始flatten,B不用flatten,所以要加1
       x = self.fc1(x)
       x = self.fc2(x)
       out = self.fc3(x)
       return out
if __name__ == '__main__':
   x = torch.rand(128,1,224,224)
   net = MyNet()
   out = net(x)
   #print(out.shape)
   summary(net, (12,1,224,224))

输出结果:

图片中红色方块计算过程:

1:相关代码及计算过程(卷积层)

self.conv7 = nn.Conv2d(
           in_channels=512,
           out_channels=512,
           kernel_size=3,
           stride=1,
           padding=1
       )

Conv2d_param= (3*3*512+1)*512=2,359,808(Conv2d-12代码同,故param同)

2:相关代码及计算过程

self.fc3 = nn.Linear(in_features=4096,out_features=1000)

Fc_fc_param=(4096+1)*1000=4,097,000


3 结语

以上为一般情况下参数量计算方法,当然还有很多细节与很多其他情况下的计算方法没有介绍,主要用来形容模型的大小程度,针对不同batch_size下param的不同,可以用于参考来选择更合适的batch_size。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
0
0
0
14
分享
相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
70 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
中国联通网络资源湖仓一体应用实践
基于DeepSeek的生成对抗网络(GAN)在图像生成中的应用
生成对抗网络(GAN)通过生成器和判别器的对抗训练,生成高质量的合成数据,在图像生成等领域展现巨大潜力。DeepSeek作为高效深度学习框架,提供便捷API支持GAN快速实现和优化。本文详细介绍基于DeepSeek的GAN技术,涵盖基本原理、实现步骤及代码示例,展示其在图像生成中的应用,并探讨优化与改进方法,如WGAN、CGAN等,解决模式崩溃、训练不稳定等问题。最后,总结GAN在艺术创作、数据增强、图像修复等场景的应用前景。
263 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
133 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
云原生应用网关进阶:阿里云网络ALB Ingress 全面增强
云原生应用网关进阶:阿里云网络ALB Ingress 全面增强
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
149 19
DeepSeek生成对抗网络(GAN)的训练与应用
生成对抗网络(GANs)是深度学习的重要技术,能生成逼真的图像、音频和文本数据。通过生成器和判别器的对抗训练,GANs实现高质量数据生成。DeepSeek提供强大工具和API,简化GAN的训练与应用。本文介绍如何使用DeepSeek构建、训练GAN,并通过代码示例帮助掌握相关技巧,涵盖模型定义、训练过程及图像生成等环节。
应用程序中的网络协议:原理、应用与挑战
网络协议是应用程序实现流畅运行和安全通信的基石。了解不同协议的特点和应用场景,以及它们面临的挑战和应对策略,对于开发者和用户都具有重要意义。在未来,随着技术的不断发展,网络协议也将不断优化和创新,为数字世界的发展提供更强大的支持。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等