Python应用专题 | 7:pandas中列方向字符统计及其合并

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 主要介绍如何统计pandas中列方向字符及其合并

背景

DataFrame 中某一列为str类型,
(1)想要统计该列方向各个字符的词频
(2)将2个列的统计结果进行合并,即相同key进行相加

实施

import pandas as pd
import pdb
from collections import Counter
datas = {'column1': ['我毕业于华中科技大学', '我毕业于武汉大学'], 'column2': ['我选露娜', '夏洛特']}
df = pd.DataFrame(datas)
print(df)
column1_counter = Counter(df['column1'].str.cat())
column2_counter = Counter(df['column2'].str.cat())
print("column1_counter=", column1_counter)
print("column2_counter=", column2_counter)
# 2个 字典合并
# pdb.set_trace()
total_counter = column1_counter + column2_counter
print("total_counter=", total_counter)

运行结果如下:

      column1 column2
0  我毕业于华中科技大学    我选露娜
1    我毕业于武汉大学     夏洛特
column1_counter= Counter({'我': 2, '毕': 2, '业': 2, '于': 2, '大': 2, '学': 2, '华': 1, '中': 1, '科': 1, '技': 1, '武': 1, '汉': 1})
column2_counter= Counter({'我': 1, '选': 1, '露': 1, '娜': 1, '夏': 1, '洛': 1, '特': 1})
total_counter= Counter({'我': 3, '毕': 2, '业': 2, '于': 2, '大': 2, '学': 2, '华': 1, '中': 1, '科': 1, '技': 1, '武': 1, '汉': 1, '选': 1, '露': 1, '娜': 1, '夏': 1, '洛': 1, '特': 1})
相关文章
|
8天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
104 71
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
78 3
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
72 3
|
5天前
|
分布式计算 数据可视化 数据挖掘
Pandas数据应用:社交媒体分析
本文介绍如何使用Pandas进行社交媒体数据分析,涵盖数据获取、预处理、探索性分析和建模的完整流程。通过API获取数据并转换为DataFrame格式,处理缺失值和数据类型转换问题。利用Matplotlib等库进行可视化,展示不同类型帖子的数量分布。针对大规模数据集提供内存优化方案,并结合TextBlob进行情感分析。最后总结常见问题及解决方案,帮助读者掌握Pandas在社交媒体数据分析中的应用。
134 96
|
7天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
106 73
|
10天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
59 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
4天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
42 22
|
1天前
|
机器学习/深度学习 运维 分布式计算
Pandas数据应用:异常检测
本文介绍如何使用Pandas进行异常检测,涵盖异常值定义及其对数据分析的影响。通过简单统计方法(如均值+3标准差)、箱线图法(基于四分位距IQR)和基于密度的方法(如DBSCAN),并提供代码案例。同时,针对数据类型不匹配、缺失值处理不当及大数据量性能问题等常见报错给出解决方案。掌握这些技术有助于提高数据分析的准确性和可靠性。
36 19
|
3天前
|
数据采集 数据挖掘 数据处理
Pandas数据应用:金融数据分析
本文介绍如何使用Pandas进行金融数据分析,涵盖数据导入、清洗、转换等基础操作。通过处理缺失值、重复值及数据类型不匹配等问题,结合时间序列分析和大规模数据处理技巧,帮助读者掌握常见问题的解决方案。案例分析展示了计算每日收益率并绘制图表的具体步骤。
32 14