【深度学习】基于卷积神经网络的天气识别训练

简介: 【深度学习】基于卷积神经网络的天气识别训练

前言

关于环境这里不再赘述,与【深度学习】从LeNet-5识别手写数字入门深度学习一文的环境一致。然后需要补充一个pillow包版本7.20即可。

了解weather_photos数据集

该数据包含多云、下雨、晴、日出四种类型天气的照片。分为四个文件夹,每个文件夹对应着该类型的天气图片。

文件夹名称 天气类型 数据量
cloudy 多云 300
rain 下雨 215
shine 253
sunrise 日出 357


可以看到每种类型的数量不一致,这会影响我们的训练结果。因为下雨的数据集较少,可能会导致识别下雨类型的图片正确率下降等问题。


下载weather_photos数据集

1、可以私信我发你

2、我把数据集打包放在csdn上面,由于最低设置1的币,没有币的同学请私聊我发你就好。下载地址


采用CPU训练还是GPU训练

一般来说有好的显卡(GPU)就使用GPU训练因为,那么对应的你就要下载tensorflow-gpu包。如果你的显卡较差或者没有足够资金入手一款好的显卡就可以使用CUP训练。


区别

(1)CPU主要用于串行运算;而GPU则是大规模并行运算。由于深度学习中样本量巨大,参数量也很大,所以GPU的作用就是加速网络运算。


(2)CPU计算神经网络也是可以的,算出来的神经网络放到实际应用中效果也很好,只不过速度会很慢罢了。而目前GPU运算主要集中在矩阵乘法和卷积上,其他的逻辑运算速度并没有CPU快。


使用CPU训练

# 使用cpu训练
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

使用CPU训练时不会显示CPU型号。

使用GPU训练

gpus = tf.config.list_physical_devices("GPU")
if gpus:
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")


使用GPU训练时会显示对应的GPU型号。

导入数据

这里将本地存放数据集的路径给到data_dir变量中。

import matplotlib.pyplot as plt
import PIL
# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)
# 设置随机种子尽可能使结果可以重现
tf.random.set_seed(1)
from tensorflow import keras
from tensorflow.keras import layers, models
import pathlib
data_dir = "E:\\PythonProject\\day4\\datasets\\weather_photos\\"
data_dir = pathlib.Path(data_dir)


查看数据量

image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)


预处理

加载数据集

这里我们设置了单次训练所抓取的数据样本数量以及图片尺寸。

batch_size = 32
img_height = 180
img_width = 180


并通过image_dataset_from_directory方法将数据集加载到tf.data.dataset中

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)


加载成功后,会把加载的数据集量以及数据种类打印出来。训练数据集按照80%的量分类并将训练集返回出来。

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)


使用同样的方法将测试数据集返回出来,要主要这里的参数只有subset不同。

打印各类型

可以通过class_names方法将数据集的种类进行打印,默认按照文件字母排序

class_names = train_ds.class_names
print(class_names)


运行结果

显示部分图片

首先需要建立一个标签数组,然后绘制前20张,每行5个共四行

from matplotlib import pyplot as plt
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(4, 5, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
plt.show()


绘制结果:


配置数据集(加快速度)

shuffle():该函数是将列表的所有元素随机排序。 有时候我们的任务中会使用到随机sample一个数据集的某些数,比如一个文本中,有10行,我们需要随机选取前5个。

prefetch():prefetch是预取内存的内容,程序员告诉CPU哪些内容可能马上用到,CPU预取,用于优化。

AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)


建立CNN模型

这里新增了一个dropout层。

dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络,防止过拟合。

num_classes = 4
layers.Dropout(0.4) 
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), 
    layers.AveragePooling2D((2, 2)),               
    layers.Conv2D(32, (3, 3), activation='relu'),
    layers.AveragePooling2D((2, 2)),              
    layers.Conv2D(64, (3, 3), activation='relu'), 
    layers.Dropout(0.3),  
    layers.Flatten(),                      
    layers.Dense(128, activation='relu'),
    layers.Dense(num_classes)              
])
model.summary()  # 打印网络结构


网络结构

包含输入层的话总共10层。其中有三个卷积层,俩个最大池化层,一个flatten层,俩个全连接层,一个dropout层。


参数量

总共参数为13M,参数量更加庞大但是数据集不是很多问题不大。建议采用GPU训练。

Total params: 13,794,980
Trainable params: 13,794,980
Non-trainable params: 0


训练模型

训练模型,进行10轮,

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
epochs = 10
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)


训练结果:测试集acc为87.56%。从效果来说该模型还是不错的。

模型评估

对训练完模型的数据制作成曲线表,方便之后对模型的优化,看是过拟合还是欠拟合还是需要扩充数据等等。

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


运行结果:

附录(Anaconda 配置)

将下面的内容进行保存为*.yaml文件即可通过Anaconda软件进行配置导入。

首行的name可以自己修改就是虚拟环境的名称。

name: day5
channels:
  - defaults
dependencies:
  - blas=1.0=mkl
  - ca-certificates=2022.07.19=haa95532_0
  - certifi=2022.6.15=py37haa95532_0
  - cudatoolkit=10.1.243=h74a9793_0
  - cudnn=7.6.5=cuda10.1_0
  - cycler=0.11.0=pyhd3eb1b0_0
  - freetype=2.10.4=hd328e21_0
  - glib=2.69.1=h5dc1a3c_1
  - gst-plugins-base=1.18.5=h9e645db_0
  - gstreamer=1.18.5=hd78058f_0
  - icu=58.2=ha925a31_3
  - intel-openmp=2021.4.0=haa95532_3556
  - jpeg=9e=h2bbff1b_0
  - kiwisolver=1.4.2=py37hd77b12b_0
  - libffi=3.4.2=hd77b12b_4
  - libiconv=1.16=h2bbff1b_2
  - libogg=1.3.5=h2bbff1b_1
  - libpng=1.6.37=h2a8f88b_0
  - libtiff=4.2.0=he0120a3_1
  - libvorbis=1.3.7=he774522_0
  - libwebp=1.2.2=h2bbff1b_0
  - libxml2=2.9.14=h0ad7f3c_0
  - libxslt=1.1.35=h2bbff1b_0
  - lz4-c=1.9.3=h2bbff1b_1
  - matplotlib=3.2.1=0
  - matplotlib-base=3.2.1=py37h64f37c6_0
  - mkl=2021.4.0=haa95532_640
  - mkl-service=2.4.0=py37h2bbff1b_0
  - mkl_fft=1.3.1=py37h277e83a_0
  - mkl_random=1.2.2=py37hf11a4ad_0
  - numpy-base=1.21.5=py37hca35cd5_3
  - olefile=0.46=py37_0
  - openssl=1.1.1q=h2bbff1b_0
  - packaging=21.3=pyhd3eb1b0_0
  - pcre=8.45=hd77b12b_0
  - pillow=8.0.0=py37hca74424_0
  - pip=22.1.2=py37haa95532_0
  - ply=3.11=py37_0
  - pyparsing=3.0.4=pyhd3eb1b0_0
  - pyqt=5.15.7=py37hd77b12b_0
  - pyqt5-sip=12.11.0=py37hd77b12b_0
  - python=3.7.0=hea74fb7_0
  - python-dateutil=2.8.2=pyhd3eb1b0_0
  - qt-main=5.15.2=he8e5bd7_4
  - qt-webengine=5.15.9=hb9a9bb5_4
  - qtwebkit=5.212=h3ad3cdb_4
  - setuptools=61.2.0=py37haa95532_0
  - sip=6.6.2=py37hd77b12b_0
  - six=1.16.0=pyhd3eb1b0_1
  - sqlite=3.38.5=h2bbff1b_0
  - tk=8.6.12=h2bbff1b_0
  - toml=0.10.2=pyhd3eb1b0_0
  - tornado=6.1=py37h2bbff1b_0
  - typing_extensions=4.1.1=pyh06a4308_0
  - vc=14.2=h21ff451_1
  - vs2015_runtime=14.27.29016=h5e58377_2
  - wheel=0.37.1=pyhd3eb1b0_0
  - wincertstore=0.2=py37haa95532_2
  - xz=5.2.5=h8cc25b3_1
  - zlib=1.2.12=h8cc25b3_2
  - zstd=1.5.2=h19a0ad4_0
  - pip:
    - absl-py==1.2.0
    - astor==0.8.1
    - astunparse==1.6.3
    - cachetools==4.2.4
    - charset-normalizer==2.1.0
    - flatbuffers==2.0
    - gast==0.2.2
    - google-auth==1.35.0
    - google-auth-oauthlib==0.4.6
    - google-pasta==0.2.0
    - grpcio==1.48.0
    - h5py==3.7.0
    - idna==3.3
    - importlib-metadata==4.12.0
    - keras-applications==1.0.8
    - keras-nightly==2.11.0.dev2022080907
    - keras-preprocessing==1.1.2
    - libclang==14.0.6
    - markdown==3.4.1
    - markupsafe==2.1.1
    - numpy==1.21.6
    - oauthlib==3.2.0
    - opt-einsum==3.3.0
    - protobuf==3.19.4
    - pyasn1==0.4.8
    - pyasn1-modules==0.2.8
    - requests==2.28.1
    - requests-oauthlib==1.3.1
    - rsa==4.9
    - scipy==1.4.1
    - tb-nightly==2.10.0a20220809
    - tensorboard==2.1.1
    - tensorboard-data-server==0.6.1
    - tensorboard-plugin-wit==1.8.1
    - tensorflow==2.1.0
    - tensorflow-estimator==2.1.0
    - tensorflow-io-gcs-filesystem==0.26.0
    - termcolor==1.1.0
    - tf-estimator-nightly==2.11.0.dev2022080908
    - tf-nightly==2.11.0.dev20220808
    - typing-extensions==4.3.0
    - urllib3==1.26.11
    - werkzeug==2.2.1
    - wrapt==1.14.1
    - zipp==3.8.1



相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
目录
相关文章
|
11天前
|
机器学习/深度学习 自然语言处理 异构计算
Python深度学习面试:CNN、RNN与Transformer详解
【4月更文挑战第16天】本文介绍了深度学习面试中关于CNN、RNN和Transformer的常见问题和易错点,并提供了Python代码示例。理解这三种模型的基本组成、工作原理及其在图像识别、文本处理等任务中的应用是评估技术实力的关键。注意点包括:模型结构的混淆、过拟合的防治、输入序列长度处理、并行化训练以及模型解释性。掌握这些知识和技巧,将有助于在面试中展现优秀的深度学习能力。
35 11
|
19天前
|
机器学习/深度学习 算法 PyTorch
【动手学深度学习】深入浅出深度学习之线性神经网络
【动手学深度学习】深入浅出深度学习之线性神经网络
61 9
|
5天前
|
机器学习/深度学习 存储 监控
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
15 0
|
2天前
|
机器学习/深度学习 算法 TensorFlow
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
|
2天前
|
机器学习/深度学习 Python
【深度学习入门】- 神经网络
【深度学习入门】- 神经网络
|
3天前
|
机器学习/深度学习 数据可视化 数据挖掘
【视频】少样本图像分类?迁移学习、自监督学习理论和R语言CNN深度学习卷积神经网络实例
【视频】少样本图像分类?迁移学习、自监督学习理论和R语言CNN深度学习卷积神经网络实例
11 1
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
|
8天前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
24 1
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
|
12天前
|
机器学习/深度学习 数据可视化 测试技术
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
21 0
|
13天前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
30 9

热门文章

最新文章