数据结构(3)基础查找算法——顺序查找、二分查找(JAVA版)

简介: 3.1.顺序查找顺序查找,时间复杂度是O(n),逻辑很简单,就是依次遍历一个线性的数据结构判断所要查找的目标数据是否在这个数据结构里。以下是代码实现:

3.1.顺序查找

顺序查找,时间复杂度是O(n),逻辑很简单,就是依次遍历一个线性的数据结构判断所要查找的目标数据是否在这个数据结构里。以下是代码实现:

public boolean sequentialSearch(int target){
        int[] array={1,3,5,7,9,11,13,15};
        for(int i=0;i<array.length;i++){
            if(array[i]==target){
                return true;
            }
        }
        return false;
    }

3.2.二分查找

3.2.1.逻辑简介

二分查找,适用的前提是数据结构里的数据是按照升序或者降序有序排列的,时间复杂度是O(log2为底的n)。


其核心思想是折半,要查找的目标数据和当前段的中间位置的数据比较,


如果目标数据>中间位置的数据,说明要查找的目标数据只可能存在于当前段的右半段,那么就直接去右半段查找即可;


如果目标数据<中间位置的数据,说明要查找的目标数据只可能存在于当前段的左半段,那么就直接去左半段查找即可。


一直重复以上的逻辑,不断的折半载折半。


以下是逻辑简介:


准备三个指针left、mid、right,分别指向当前段的起止位置和中间位置。


查找过程停止的两个条件:


找到目标数据

left、right相撞

假设要查找的目标元素为3,一共会经历如下两次折半。

a538c4299c5748adb8d409b274220dc6.png

3.2.2.代码示例

1public class findDemo {
    int[] array={1,3,5,7,9,11,13,15};
    int left=0;
    int right=array.length-1;
    int mid=array.length/2;
    public boolean binarySearch(int target){
        //递归出口1:如果mid位置的数据是要查找的数据,整个查找过程结束
        if(array[mid]==target){
            return true;
        }
        //递归出口2:如果直到right和left相遇数据都没有查找到,说明数据不存在
        if(right<=left){
            return false;
        }
        //在左半边进行查找
        if(target<array[mid]){
            right=mid-1;
            mid=left+(mid-left)/2;
        }
        //在右半边进行查找
        if(target>array[mid]){
            left=mid+1;
            mid=mid+(right-mid)/2;
        }
        //递归
        return binarySearch(target);
    }
}


目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
66 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
21天前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
36 1
|
23天前
|
存储 Java
告别混乱!用Java Map优雅管理你的数据结构
【10月更文挑战第17天】在软件开发中,随着项目复杂度增加,数据结构的组织和管理至关重要。Java中的Map接口提供了一种优雅的解决方案,帮助我们高效、清晰地管理数据。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,有效提升了代码质量和维护性。
76 2
|
23天前
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
55 2
|
6天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
22 6
|
12天前
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。
|
20天前
|
存储 算法 Java
Java 中常用的数据结构
【10月更文挑战第20天】这些数据结构在 Java 编程中都有着广泛的应用,掌握它们的特点和用法对于提高编程能力和解决实际问题非常重要。
23 6
|
21天前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
26 1
|
28天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
31 4
|
29天前
|
存储 算法 Java
Java常用的数据结构
【10月更文挑战第3天】 在 Java 中,常用的数据结构包括数组、链表、栈、队列、树、图、哈希表和集合。每种数据结构都有其特点和适用场景,如数组适用于快速访问,链表适合频繁插入和删除,栈用于实现后进先出,队列用于先进先出,树和图用于复杂关系的表示和查找,哈希表提供高效的查找性能,集合用于存储不重复的元素。合理选择和组合使用这些数据结构,可以显著提升程序的性能和效率。