1037 Magic Coupon
The magic shop in Mars is offering some magic coupons. Each coupon has an integer N printed on it, meaning that when you use this coupon with a product, you may get N times the value of that product back! What is more, the shop also offers some bonus product for free. However, if you apply a coupon with a positive N to this bonus product, you will have to pay the shop N times the value of the bonus product… but hey, magically, they have some coupons with negative N’s!
For example, given a set of coupons { 1 2 4 −1 }, and a set of product values { 7 6 −2 −3 } (in Mars dollars M$) where a negative value corresponds to a bonus product. You can apply coupon 3 (with *N* being 4) to product 1 (with value M$7) to get M$28 back; coupon 2 to product 2 to get M$12 back; and coupon 4 to product 4 to get M$3 back. On the other hand, if you apply coupon 3 to product 4, you will have to pay M$12 to the shop.
Each coupon and each product may be selected at most once. Your task is to get as much money back as possible.
Input Specification:
Each input file contains one test case. For each case, the first line contains the number of coupons NC, followed by a line with NC coupon integers. Then the next line contains the number of products NP, followed by a line with NP product values. Here 1≤NC,NP≤105, and it is guaranteed that all the numbers will not exceed 230.
Output Specification:
For each test case, simply print in a line the maximum amount of money you can get back.
Sample Input:
4 1 2 4 -1 4 7 6 -2 -3
Sample Output:
43
题意
将题意简化后,实际上是给定了两个数组 a 和 b ,需要我们计算 a 中元素与 b 中元素乘积可以得到的最大值,例如给定两个数组 {1,2,4,-1} 和 {7,6,-2,-3} ,我们发现 4*7+2*6+-1*-3 可以得到最大值 43 ,其中 1 和 -2 就不用配对了,因为得到的是负数可以省去。
思路
这道题用到了排队不等式思想,即给定两个数组,将这两个数组进行排序,得到如下:
a1 a2 a3 ... an 和 b1 b2 b3 ... bn
那么将两个数组中最大的元素分别相乘并相加即 a1*b1+a2*b2+a3*b3+...an*bn ,得到的结果在所有相乘后并相加的结果中是最大的。
在本题中,我们需要排除那些赋负权的相乘情况,例如题目例子中 1 和 -2 的情况需要舍去,所以我们只需将两数组中的元素分成两个部分,一个是正数部分,一个是负数部分。
然后对正数部分的值进行上述操作,如果两数组正数部分长度不同,则舍弃长度较长那个数组中多出来的正数小的值,例如下面两个数组的正数部分为:
1 3 5 7 和 2 4 6
由于第一个数组长度较长,所以需要舍弃最小正数 1 ,不然这个 1 就会和第二个数组中的负数进行配对(题目规定两数组长度相同,即如果正数少则相应负数就会更多)。
而负数也同理,需要舍弃长度较长那个数组中多出来的绝对值小的值。
所以具体思路如下:
1.先输入两个数组,并分别对两个数组进行排序。
2.将两数组中绝对值最大的负数元素相乘并相加,同样再对最大的正数相乘并相加。
3.输出最终结果。
代码
#include<bits/stdc++.h> using namespace std; const int N = 100010; int a[N], b[N]; int n, m; int main() { //输入两个数组 cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; cin >> m; for (int i = 0; i < m; i++) cin >> b[i]; //对两个数组进行排序 sort(a, a + n); sort(b, b + m); //计算最大优惠 int res = 0; //先计算负数部分 for (int i = 0, j = 0; i < n && j < m && a[i] < 0 && b[j] < 0; i++, j++) res += a[i] * b[j]; //再计算正数部分 for (int i = n - 1, j = m - 1; i >= 0 && j >= 0 && a[i] > 0 && b[j] > 0; i--, j--) res += a[i] * b[j]; //输出结果 cout << res << endl; return 0; }