1099 Build A Binary Search Tree
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9 1 6 2 3 -1 -1 -1 4 5 -1 -1 -1 7 -1 -1 8 -1 -1 73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
题意
二叉搜索树 (BST) 递归定义为具有以下属性的二叉树:
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
若它的右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值
它的左、右子树也分别为二叉搜索树
给定二叉树的具体结构以及一系列不同的整数,只有一种方法可以将这些数填充到树中,以使结果树满足 BST 的定义。
请你输出结果树的层序遍历。
给定一个 N NN ,所有结点范围在 0 ∼ N − 1 0 \sim N-10∼N−1 之间,接下来 N NN 行会输入 0 ∼ N − 1 0 \sim N-10∼N−1 的左右孩子的下标,其中 − 1 -1−1 表示空结点。
最后一行输出 N NN 个结点的值。
思路
- 利用二叉搜索树的性质,其中序遍历的结果一定是有序序列,所以我们将所有结点的值进行排序就可以得到该树中序遍历的结果。
- 模拟该树中序遍历的过程,然后将每个值放入对应的位置上。
- 输出层次遍历的结果。
代码
#include<bits/stdc++.h> using namespace std; const int N = 110; int n; int l[N], r[N]; //用哈希表来存储每个结点左孩子的下标 int a[N], w[N]; int q[N]; //模拟中序遍历 void dfs(int u, int& k) { if (u == -1) return; dfs(l[u], k); w[u] = a[k++]; dfs(r[u], k); } //输出层次遍历的结果 void bfs() { int hh = 0, tt = 0; q[0] = 0; while (hh <= tt) { int t = q[hh++]; if (l[t] != -1) q[++tt] = l[t]; if (r[t] != -1) q[++tt] = r[t]; } cout << w[q[0]]; for (int i = 1; i < n; i++) cout << " " << w[q[i]]; cout << endl; } int main() { cin >> n; for (int i = 0; i < n; i++) cin >> l[i] >> r[i]; for (int i = 0; i < n; i++) cin >> a[i]; sort(a, a + n); //获得中序遍历结果 int k = 0; dfs(0, k); bfs(); return 0; }