深耕大数据市场,所问数据打造深度学习数据分析与预测引擎

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

卖什么?卖多少钱?

这些是每一个线上零售卖家都会遇到的问题。在大数据时代开始之前,答案都是基于个人经验做的判断;随着近年数据分析平台纷纷上线,卖家们也渐渐开始接受多维度、不同时间粒度的数据分析服务,包括流量、销量、广告、仓储、配送、售后分析等等,一定程度上提升了运营管理能力。

但作为商家,最核心的两问,依然没有得到简单有效的解答。

所问数据(Asking Data)想以企业级服务数据平台的形式,为线上零售产业提供一款数据分析与预测的引擎,辅助商家进行决策。具体来说,平台的核心功能包括对具体行业、商品、店铺和标签四大维度的分析,以及对潜力爆品的预测——后者,是市场上首次出现的服务。第一个上线的平台,是对美国跨境电商Wish全品类商品进行数据分析的易选品。

深耕大数据市场,所问数据打造深度学习数据分析与预测引擎

第一个上线的平台,是对美国跨境电商Wish全品类商品进行数据分析的易选品。

做大数据服务的核心有二,数据源和技术。所问的数据来自全网抓取,但不同于许多大数据分析公司,所问的数据处理分析流程,从去除噪音、识别有效数据的清洗,到多来源多格式数据的转换合并,全部由机器进行,不需要任何人工介入。值得一提的是,包括京东在内的一些电商平台,并没有对外开放的产品销量数据,所问是通过对商品销售的不同维度信息进行抓取和分析推测获得的销量数据。

数据处理后的分析之外,所问最核心的技术是基于长期的产业经验和深度学习算法开发经验、自主研发的回归类预测模型。所问的创始人兼CEO颜鹏说,这个技术不止是国内、就是在全球范围内,现在都是很少见的。据悉,易选品平台对产品销量的预测,准确率在80%-90%。目前,所问已经获得公牛集团这样的付费大客户(以监控的平台和类目维度来收费,具体数额暂不方便透露),以及近300家中小型企业的使用。目前,易选品在免费试用阶段,在市场和产品都更加成熟后,会开始与已经存在的大数据分析平台一样、开始按年收取平台使用费。

深耕大数据市场,所问数据打造深度学习数据分析与预测引擎

平台每天会监控所有销售商品的信息,根据商品在上架之后一段时间内的表现,综合考虑商品本身及行业竞争等多维度数据,通过回归预测算法模型,得出从类目到单品的“潜力指数”(百分制)。指数越高,说明该类商品在未来一段时间成为爆款的可能性就越高。

艾瑞咨询的报告显示,2016年中国电子商务市场交易规模20.2万亿元,其中网络购物市场交易规模达4.7万亿元,较前年增长23.9%,预计在2017年增速为19.1%,总规模达5.6万亿元。根据阿里研究院的报告,在这个大市场中,跨境电商零售的细分市场总规模达7512亿元,其中出口额5032亿元,预计未来五年年均增速约37%,在2020年实现2.16万亿元的出口额。换言之,所问立足于一个4.7万亿的市场,并选择了其中5千亿的细分市场切入。

电商市场上的大数据分析公司并不少,有巨头级别的阿里云市场、京东数据罗盘,也有入场较早、商业化程度非常高的新兴公司如百分点科技。但深耕跨境电商这一细分市场的目前并不多,且竞品的数据服务大多仅限于数据的收集和可视化呈现。颜鹏告诉36氪,所问最大的优势也是壁垒就是技术,因为精准的选品和定价预测,对于深度学习算法开发的技术门槛非常高,且需要对电商市场独到的理解和判断,这些是目前市面上没有公司可以做到的。哪怕在较为成熟的海外市场,能够实现高精度回归预测的,也只有为数不多的公司——其中包括颜鹏曾经供职的3M公司。

深耕大数据市场,所问数据打造深度学习数据分析与预测引擎

中国跨境电商零售市场规模及年均增速

所问数据创始人兼CEO颜鹏,博士毕业于美国North Dakota State University,曾供职于美国3M、IBM等消费公司,在大数据挖掘和分布式计算有多年经验,并对消费行业非常了解。创始人兼CTO丁圣超,是中科院计算所计算机博士、美国加州大学圣地亚哥分校博士后,曾从事基因表达水平预测的研究。团队现在共有26人,其中19人为技术人员。

公司近期计划开始A轮融资。融资将主要用于团队在技术和市场方面人才的扩充。此前,公司曾获九合创投数百万的天使轮融资,和洪泰领投的千万级Pre-A轮融资。

卖什么?卖多少钱?

这些是每一个线上零售卖家都会遇到的问题。在大数据时代开始之前,答案都是基于个人经验做的判断;随着近年数据分析平台纷纷上线,卖家们也渐渐开始接受多维度、不同时间粒度的数据分析服务,包括流量、销量、广告、仓储、配送、售后分析等等,一定程度上提升了运营管理能力。

但作为商家,最核心的两问,依然没有得到简单有效的解答。

所问数据(Asking Data)想以企业级服务数据平台的形式,为线上零售产业提供一款数据分析与预测的引擎,辅助商家进行决策。具体来说,平台的核心功能包括对具体行业、商品、店铺和标签四大维度的分析,以及对潜力爆品的预测——后者,是市场上首次出现的服务。第一个上线的平台,是对美国跨境电商Wish全品类商品进行数据分析的易选品。

第一个上线的平台,是对美国跨境电商Wish全品类商品进行数据分析的易选品。

做大数据服务的核心有二,数据源和技术。所问的数据来自全网抓取,但不同于许多大数据分析公司,所问的数据处理分析流程,从去除噪音、识别有效数据的清洗,到多来源多格式数据的转换合并,全部由机器进行,不需要任何人工介入。值得一提的是,包括京东在内的一些电商平台,并没有对外开放的产品销量数据,所问是通过对商品销售的不同维度信息进行抓取和分析推测获得的销量数据。

数据处理后的分析之外,所问最核心的技术是基于长期的产业经验和深度学习算法开发经验、自主研发的回归类预测模型。所问的创始人兼CEO颜鹏说,这个技术不止是国内、就是在全球范围内,现在都是很少见的。据悉,易选品平台对产品销量的预测,准确率在80%-90%。目前,所问已经获得公牛集团这样的付费大客户(以监控的平台和类目维度来收费,具体数额暂不方便透露),以及近300家中小型企业的使用。目前,易选品在免费试用阶段,在市场和产品都更加成熟后,会开始与已经存在的大数据分析平台一样、开始按年收取平台使用费。

平台每天会监控所有销售商品的信息,根据商品在上架之后一段时间内的表现,综合考虑商品本身及行业竞争等多维度数据,通过回归预测算法模型,得出从类目到单品的“潜力指数”(百分制)。指数越高,说明该类商品在未来一段时间成为爆款的可能性就越高。

艾瑞咨询的报告显示,2016年中国电子商务市场交易规模20.2万亿元,其中网络购物市场交易规模达4.7万亿元,较前年增长23.9%,预计在2017年增速为19.1%,总规模达5.6万亿元。根据阿里研究院的报告,在这个大市场中,跨境电商零售的细分市场总规模达7512亿元,其中出口额5032亿元,预计未来五年年均增速约37%,在2020年实现2.16万亿元的出口额。换言之,所问立足于一个4.7万亿的市场,并选择了其中5千亿的细分市场切入。

电商市场上的大数据分析公司并不少,有巨头级别的阿里云市场、京东数据罗盘,也有入场较早、商业化程度非常高的新兴公司如百分点科技。但深耕跨境电商这一细分市场的目前并不多,且竞品的数据服务大多仅限于数据的收集和可视化呈现。颜鹏告诉36氪,所问最大的优势也是壁垒就是技术,因为精准的选品和定价预测,对于深度学习算法开发的技术门槛非常高,且需要对电商市场独到的理解和判断,这些是目前市面上没有公司可以做到的。哪怕在较为成熟的海外市场,能够实现高精度回归预测的,也只有为数不多的公司——其中包括颜鹏曾经供职的3M公司。

中国跨境电商零售市场规模及年均增速

所问数据创始人兼CEO颜鹏,博士毕业于美国North Dakota State University,曾供职于美国3M、IBM等消费公司,在大数据挖掘和分布式计算有多年经验,并对消费行业非常了解。创始人兼CTO丁圣超,是中科院计算所计算机博士、美国加州大学圣地亚哥分校博士后,曾从事基因表达水平预测的研究。团队现在共有26人,其中19人为技术人员。

公司近期计划开始A轮融资。融资将主要用于团队在技术和市场方面人才的扩充。此前,公司曾获九合创投数百万的天使轮融资,和洪泰领投的千万级Pre-A轮融资。 


  

本文转自d1net(转载)


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
186 14
|
30天前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
1月前
|
数据采集 缓存 大数据
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
178 1
|
1月前
|
机器学习/深度学习 搜索推荐 数据挖掘
数据分析真能让音乐产业更好听吗?——聊聊大数据在音乐里的那些事
数据分析真能让音乐产业更好听吗?——聊聊大数据在音乐里的那些事
144 9
|
2月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
140 14
|
1月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
机器学习/深度学习 传感器 监控
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
106 1
|
2月前
|
数据采集 自动驾驶 机器人
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
209 1
|
3月前
|
机器学习/深度学习 监控 大数据
数据当“安全带”:金融市场如何用大数据玩转风险控制?
数据当“安全带”:金融市场如何用大数据玩转风险控制?
137 10
|
2月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。