m基于PID控制器的电动车充放电系统的simulink建模与仿真

简介: m基于PID控制器的电动车充放电系统的simulink建模与仿真

1.算法仿真效果
matlab2022a仿真结果如下:
1f6fb32932096da2b84e937d517fba44_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
655a54248ab3cf18a27312854f4d2548_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1a5665ac5730fbd8e552c53cb00f3d4a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
61a73a26491e54149d99d14b8194514b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
image.png

2.算法涉及理论知识概要
随着全球经济的增长、人口的增多,能源消耗速率越来越快。而化石类能源总量有限,难以满足未来人类日益庞大的能源需求。此外,环境污染、能源危机和能源安全等因素将电动汽车推上了历史的舞台,成为了全世界研究和关注的热点。和传统汽车产业相比,电动汽车具有环保和节能的双重效益。特别是纯电动汽车在能量转换效率和尾气排放等方面具有明显优势,是未来汽车产业重要的发展方向。电动汽车作为一种低碳、清洁的交通工具,受到世界各国政府的高度关注。但是在电动汽车中电池是否能够合理充放电是制约电动汽车能否得到广泛发展的重要因素[01]。

随着计算机技术的快速发展,基于计算机建模的仿真手段在电动汽车研发阶段充分显示了较强的经济适用性。采用计算机仿真技术可以大大缩减实际工作中系统开发时间,节约研发成本,同时可以有效的规避实验过程中可能存在的安全隐患。本课题将要研究的电动车电池充放电控制策略是电动车充放电技术的一个重要领用领域[02]。因此,通过计算机仿真技术对电动汽车电池充放电的控制策略进行研究对于电动车的发展有着重大的实际作用和巨大的经济价值。

    随着全球经济的增长、人口的增多,传统的化石类能源难以满足未来人类日益庞大的能源需求。因此,对于新能源的使用有着越来越大的需求。和传统汽车产业相比,电动汽车具有环保和节能的双重效益。特别是纯电动汽车在能量转换效率和尾气排放等方面具有明显优势,是未来汽车产业重要的发展方向。而对电动车电池的充放电的控制策略则是电动汽车研究的一个重要环节。对电动汽车蓄电池充放电控制策略的基本原理进行了介绍,包括PID控制器,基于PID和PWM充放电控制策略以及蓄电池模型。并通过SIMULINK对相关原理进行了建模,设计了一个基于SIMULINK电动车充放电控制策略仿真模型。对该仿真模型进行了仿真分析,分别对充电过程和放电过程进行了仿真验证分析,仿真结果验证了充放电控制策略的正确性。

  蓄电池种类可以分为:铅酸蓄电池、镍氢蓄电池、镍氢蓄电池、锂离子电池、镍镉电池、钠硫蓄电池、镍锌蓄电池、飞轮电池[12]。其中较为常用的电池类型为锂离子电池、铅酸蓄电池等。这里以锂离子电池为例对蓄电池的基本原理进行介绍。

   锂离子电池作为一种新型高电压、高能量密度的可充电电池,其独特的物理和电化学性能,具有广泛的民用(如新能源汽车)前景。其突出的特点是:重量轻、储能大、无污染、无记忆效应、使用寿命长。在同体积重量情况下,锂电池的蓄电能力是镍氢电池的1.6倍,是镍镉电池的4倍,开发前景非常光明。同时它是一种真正的绿色环保电池,不会对环境造成污染,是目前最佳的能应用到电动车上的电池。

电动汽车的充电控制结构框图如下图所示:
d89adb265079c0402a115953b460e411_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   该控制器结构的基本原理为在充电控制阶段,将输入电流 信号和设定的参考电流信号进行比较,经 PID 调节器后与三角波比较,产生输出信号控制开关的通断,实现恒流充电。  

   电动汽车的放电模式采用电流负反馈控制方式,其结构和充电控制结构相似,放电控制结构框图如下图所示:

423209e34d4f7b246453214d7d4f34c1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    该控制器结构的基本原理为根据需求,设定放电参考电流 。电池放电电流实测值 与参考值进行比较,产生控制信号控制开关管的开通时间来控制放电电流的稳定,实现恒电流放电的目的。最后,根据上述原理介绍,最终基于PID的PWM充放电控制结构的SIMULINK建模如下图所示:

3f4737dadb2c5f2c809797b1074caaeb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

552793d1bbfa730109afb5639a01a464_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4a5086560257f6515eb3e4aa17988f64_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

```load PWM1.mat
PWM2 = ans.Data;
T2 = ans.Time;
figure;
subplot(211);
plot(T2(1:100:end),PWM2(1:100:end),'linewidth',2);
grid on
xlabel('t/s');
title('charge PWM');
axis([0,6,0,1.2]);

load PWM2.mat
PWM2 = ans.Data;
T2 = ans.Time;
subplot(212);
plot(T2(1:1000:end),PWM2(1:1000:end),'linewidth',2);
grid on
xlabel('t/s');
title('discharge PWM');
axis([0,6,0,1.2]);

load speed.mat
speed2 = ans.Data;
T2 = ans.Time;
figure;
plot(T2(1:1000:end),max((max(speed2)-speed2(1:1000:end)-50)/1000,0),'linewidth',2);
grid on
xlabel('t/s');
title('speed');
axis([2.5,6,0,0.8]);

load I.mat
I = ans.Data;
T2 = ans.Time;
figure;
subplot(211);
plot(T2(10000:1000:end),I(10000:1000:end),'linewidth',2);
grid on
xlabel('t/s');
title('I/A');
axis([0,6,-20,50]);

load V.mat
V = ans.Data;
T2 = ans.Time;
subplot(212);
plot(T2(10000:1000:end),V(10000:1000:end),'linewidth',2);
grid on
xlabel('t/s');
title('U/V');
axis([0,6,0,250]);

load V.mat
V = ans.Data;
T2 = ans.Time;
subplot(212);
plot(T2(10000:1000:end),V(10000:1000:end),'linewidth',2);
grid on
xlabel('t/s');
title('U/V');
axis([0,6,0,250]);
load SOCs.mat
t = ans(1,:);
s = ans(2,:);
figure;
plot(t(10000:1000:end),s(10000:1000:end),'linewidth',2);
grid on
xlabel('t/s');
title('SOC');
axis([0,6,0.4,0.6]);
```

相关文章
|
21天前
|
机器学习/深度学习
基于RBF-PID控制器的风力发电系统simulink建模与仿真
本研究基于MATLAB2022a,使用Simulink对风力发电系统进行了建模与仿真,旨在对比PID与RBF-PID控制器的性能。RBF-PID控制器通过引入径向基函数神经网络,实现了PID参数的在线自适应调整,显著提升了对非线性风电系统的控制效果。仿真结果显示,相较于传统PID,RBF-PID能更有效地应对系统不确定性和参数变化,提高系统的鲁棒性和稳定性。
风储微网虚拟惯性控制系统simulink建模与仿真
风储微网虚拟惯性控制系统通过集成风力发电、储能系统等,模拟传统同步发电机的惯性特性,提高微网频率稳定性。Simulink建模与仿真结果显示,加入虚拟惯性控制后,电压更平缓地趋于稳定。该系统适用于大规模可再生能源接入,支持MATLAB2022a版本。
|
1月前
|
算法
基于模糊PID控制器的的无刷直流电机速度控制simulink建模与仿真
本课题基于模糊PID控制器对无刷直流电机(BLDCM)进行速度控制的Simulink建模与仿真。该系统融合了传统PID控制与模糊逻辑的优势,提高了BLDCM的速度动态响应、抗干扰能力和稳态精度。通过模糊化、模糊推理和解模糊等步骤,动态调整PID参数,实现了对电机转速的精确控制。适用于多种工况下的BLDCM速度控制应用。
|
1月前
|
传感器 算法
基于MPPT的风力机发电系统simulink建模与仿真
本课题基于最大功率点跟踪(MPPT)技术,对风力机发电系统进行Simulink建模与仿真。通过S函数实现MPPT算法,实时监测和调整风力发电机的工作状态,使其始终工作在最佳效率点,从而最大限度地利用风能,提高风力发电效率。系统包括风速传感器、发电机状态监测模块、MPPT控制器、发电机驱动系统及反馈回路,确保闭环控制的稳定性和准确性。
|
2月前
|
vr&ar
基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出虚拟现实动画
本项目基于MATLAB2022a的Simulink平台,构建了四旋翼无人机的PID控制模型,实现了无人机升空、下降及再次升空的飞行仿真,并生成了VR虚拟现实动画。通过调整PID参数,优化了无人机的姿态控制性能,展示了无人机在三维空间中的动态行为。
|
4月前
|
算法
基于智能电网系统的PQ并网控制器simulink建模与仿真
在MATLAB 2022a的Simulink环境中构建智能电网PQ并网控制器模型,实现对并网三相电压电流的精确控制及其收敛输出。PQ控制器根据实时需求调节有功与无功功率,确保电力系统稳定。通过测量、计算、比较、控制和执行五大环节,实现PQ参考值的跟踪,保证电能质量和系统稳定性。广泛适用于可再生能源并网场景。
基于智能电网系统的PQ并网控制器simulink建模与仿真
|
5月前
|
算法
基于模糊PID的直流电机控制系统simulink建模与仿真
- **课题概述**: 实现了PID与模糊PID控制器的Simulink建模,对比二者的控制响应曲线。 - **系统仿真结果**: 模糊PID控制器展现出更快的收敛速度与更小的超调。 - **系统原理简介**: - **PID控制器**: 一种广泛应用的线性控制器,通过比例、积分、微分作用控制偏差。 - **模糊PID控制器**: 结合模糊逻辑与PID控制,动态调整PID参数以优化控制性能。 - **模糊化模块**: 将误差和误差变化率转换为模糊量。 - **模糊推理模块**: 根据模糊规则得出控制输出。 - **解模糊模块**: 将模糊控制输出转换为实际控制信号。
基于PID控制器的直流电机位置控制系统simulink建模与仿真
**摘要:** 构建基于PID的直流电机位置控制系统,利用PID的简易性和有效性实现精确控制。在MATLAB2022a中进行系统仿真,展示结果。控制器基于误差(e(t))生成控制信号(u(t)),由比例(K_p)、积分(K_i)和微分(K_d)项构成。系统采用三层控制环:位置环设定速度参考,速度环调节实际速度,电流环确保电流匹配,以达成期望位置。
|
4月前
|
算法
自适应PID控制器的simulink建模与仿真
本研究实现PID控制器参数(kp, ki, kd)的自适应调整,达成最优控制并展示参数收敛过程。MATLAB2022a环境下仿真结果显示,参数经调整后趋于稳定,控制器输出平滑,误差显著降低。自适应PID通过实时监测系统性能自动优化参数,有效应对不确定性,维持系统稳定及高性能。采用不同优化算法调整PID参数,确保最佳控制效果。
|
6月前
|
监控
基于模糊PID控制器的风力温度控制系统simulink建模与仿真
**课题概述:** 设计一个室温控制系统,保持室内温度在23ºc,当温度超出范围时,电风扇自动调整档位。系统监控温度、压强、风速、通风量和风扇参数。 **系统仿真:** 使用MATLAB2022a进行仿真。 **核心原理:** 结合模糊逻辑和PID控制的系统,模糊逻辑处理不确定信息,调整PID参数以优化温度控制。 **模糊PID:** 输入(温度误差e,误差变化率ec),输出(PID参数调整量)。模糊规则库决定参数调整,模糊推理生成输出,清晰化处理转换为实际参数调整,改善系统性能。 **整体结构:** 包含模糊逻辑控制器和PID调节,动态适应环境变化,确保设备稳定高效运行。