风储微网虚拟惯性控制系统simulink建模与仿真

简介: 风储微网虚拟惯性控制系统通过集成风力发电、储能系统等,模拟传统同步发电机的惯性特性,提高微网频率稳定性。Simulink建模与仿真结果显示,加入虚拟惯性控制后,电压更平缓地趋于稳定。该系统适用于大规模可再生能源接入,支持MATLAB2022a版本。

1.课题概述
风储微网虚拟惯性控制系统simulink建模与仿真。风储微网虚拟惯性控制系统是一种模仿传统同步发电机惯性特性的控制策略,它通过集成风力发电系统、储能系统和其他分布式电源,以提供类似同步发电机的惯性和频率支撑服务,保障微网在大规模可再生能源接入后仍能保持稳定的频率和电压水平。

2.系统仿真结果

5caf4aff374acf0edab6a1fa17f68de1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

    在加入虚拟惯性控制后,电压缓慢趋于稳定值,且随着电压调整系数的增大,电压更加平缓地趋于稳定。

3.核心程序与模型
版本:MATLAB2022a

2.jpeg
3.jpeg
4.jpeg

4.系统原理简介
整体构架如下:

a4bc5db86787e1a5c7756d6a13d0e614_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    在传统的电力系统中,同步发电机的转动惯性对于系统频率稳定性至关重要。当系统发生功率扰动时,发电机的转动动能可以暂时吸收或释放能量,从而减缓系统频率的变化速度,为调频措施赢得时间。虚拟惯性控制就是通过模拟这一过程,使风储微网具备类似的惯性响应特性。

6ecde2b7253c915badf18f9c5bb5f4bb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6d57b2daea6318c7b3909ce33bcc31ea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   风储微网虚拟惯性控制系统能够及时、有效地模拟传统同步发电机的惯性行为,提高微网系统的频率稳定性,支持大规模可再生能源的并网运行。实际应用中,虚拟惯性控制还涉及到频率测量、通讯延时、系统动态响应等多方面问题,需要综合考虑和优化设计。
相关文章
|
1月前
|
算法 调度 SoC
基于飞轮和蓄电池的混合储能充放电控制系统simulink建模与仿真
本研究针对基于飞轮和蓄电池的混合储能充放电控制系统进行Simulink建模与仿真,通过改进控制算法显著提升系统性能。仿真结果显示,改进后的算法不仅提高了充电效率,缩短了充电时间,还优化了电池从放电到充电的切换过程,有效减少了电流过冲现象,延长了蓄电池的使用寿命。此外,飞轮储能的速度和稳定性也得到了明显改善。系统采用MATLAB2022a版本进行开发,详细介绍了飞轮和蓄电池储能系统的原理及其数学模型。
|
5月前
|
算法
基于MPPT最大功率跟踪算法的涡轮机控制系统simulink建模与仿真
**摘要:** 本课题构建了基于Simulink的涡轮机MPPT控制系统模型,采用爬山法追踪最大功率点,仿真展示MPPT控制效果、功率及转速变化。使用MATLAB2022a进行仿真,结果显示高效跟踪性能。MPPT算法确保系统在不同条件下的最优功率输出,通过调整涡轮参数如转速,匹配功率-转速曲线的峰值。该方法借鉴自光伏系统,适应涡轮机的变速操作。
|
1月前
|
传感器 算法
基于MPPT的风力机发电系统simulink建模与仿真
本课题基于最大功率点跟踪(MPPT)技术,对风力机发电系统进行Simulink建模与仿真。通过S函数实现MPPT算法,实时监测和调整风力发电机的工作状态,使其始终工作在最佳效率点,从而最大限度地利用风能,提高风力发电效率。系统包括风速传感器、发电机状态监测模块、MPPT控制器、发电机驱动系统及反馈回路,确保闭环控制的稳定性和准确性。
|
2月前
|
vr&ar
基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出虚拟现实动画
本项目基于MATLAB2022a的Simulink平台,构建了四旋翼无人机的PID控制模型,实现了无人机升空、下降及再次升空的飞行仿真,并生成了VR虚拟现实动画。通过调整PID参数,优化了无人机的姿态控制性能,展示了无人机在三维空间中的动态行为。
|
4月前
|
算法
基于智能电网系统的PQ并网控制器simulink建模与仿真
在MATLAB 2022a的Simulink环境中构建智能电网PQ并网控制器模型,实现对并网三相电压电流的精确控制及其收敛输出。PQ控制器根据实时需求调节有功与无功功率,确保电力系统稳定。通过测量、计算、比较、控制和执行五大环节,实现PQ参考值的跟踪,保证电能质量和系统稳定性。广泛适用于可再生能源并网场景。
基于智能电网系统的PQ并网控制器simulink建模与仿真
|
4月前
|
算法 芯片
基于MPPT最大功率跟踪算法的光伏并网发电系统simulink仿真
本项目采用Simulink仿真构建基于MPPT的最大功率跟踪光伏并网发电系统,自行建立PV模型而非使用内置模块。系统包含MPPT控制器、PI控制器、锁相环及逆变器等,实现光伏阵列在各种条件下高效运行于最大功率点。仿真结果显示光伏并网输出的电流(Ipv)、电压(Upv)及功率(Ppv)波形。通过闭环控制,系统持续调整以维持最佳功率输出,有效提升光伏系统的整体效能和环境适应性。
|
5月前
|
传感器 算法
基于MPPT最大功率跟踪算法的风力机控制电路simulink建模与仿真
**摘要:** 本课题利用MATLAB2022a的Simulink进行风力机MPPT控制电路仿真,关注风力机转速、功率参数及CP效率。MPPT确保风力机在不同风速下优化运行,捕捉最大功率。风力机将风能转化为电能,功率与风速、叶片及发电机特性相关。MPPT算法动态调整参数以保持在最大功率点,常见算法如扰动观察法。仿真包含风速、转速、功率测量及控制算法模块,设计时需综合考虑传感器精度、抗干扰及控制器性能,适应不同风力机和发电机需求。
|
5月前
|
存储
基于蓄电池和飞轮混合储能系统的SIMULINK建模与仿真
构建了基于SIMULINK的蓄电池-飞轮混合储能系统模型,重点在于飞轮模型与控制策略。仿真展示了充放电电流电压、功率波形及交流负载端的电气参数变化,揭示了系统从波动到稳定的过程。 ### 系统原理 - 混合储能系统结合了蓄电池(化学能转换)和飞轮(动能存储)的优势,提供高效快速的能量响应。 - 蓄电池通过化学反应进行能量储存和释放。 - 飞轮储能利用电动机/发电机转换动能和电能。 - 智能控制协调二者工作,适应电力系统需求,提升系统性能。 ### 混合储能原理 混合系统利用控制系统协同蓄电池和飞轮,优化充电和放电,以提高储能效率和电力系统的整体表现,预示着其未来广泛应用的潜力。
|
6月前
|
算法
基于LQR控制算法的电磁减振控制系统simulink建模与仿真
该文主要介绍了基于LQR控制算法的电磁减振控制系统在MATLAB2022a中的Simulink建模与仿真。文章展示了系统仿真输出的控制器收敛曲线,并提供了相关图像来解释系统原理。LQR算法通过优化二次成本函数实现振动抑制,尤其适用于电磁减振系统,利用电磁执行机构动态调整力,高效抑制振动。文中附有关键模型和原理图。
|
6月前
|
传感器
基于PI控制和六步逆变器供电的无刷直流电动机控制系统simulink建模与仿真
该文介绍了基于PI控制和六步逆变器的无刷直流电动机(BLDC)控制系统。BLDC因高效、长寿用于各类产品,其控制需结合逆变器与精确的PI控制器。六步逆变器将直流转换为三相交流电,PI控制器负责速度和位置控制。系统包括速度、位置传感器,PI控制器,PWM发生器和逆变器,通过闭环控制实现电机稳定运行。MATLAB2022a用于仿真验证。参数优化对系统性能关键,常通过实验或仿真确定。