javascript算法之从会用到理解 - 二分法

简介: javascript算法之从会用到理解 - 二分法

前言

某种算法的实际应用,核心就是要找到当前算法的使用前提,基于其算法核心,对数据进行重组、改造,最终输出;

二分法

二分法顾名思义,通过每次取中间数进行对比,从而得到想要的数据,这就不必赘述了吧!

下面来讲一下二分法的算法核心:

  1. 确定为有序数组,
  2. 利用三个数进行查找,所以先确定三个值,开始值、末尾值、中间值;中间值需要进行计算得来;
  3. 将中间值与目标值进行比较;
  • 中间值 < 末尾值/目标值,以中间值的下一位作为末尾值,开始值不变;
  • 中间值 > 末尾值/目标值,以开始值的前一位作为开始值,末尾值不变;
  • 目标值 = 中间值,则为想要的结果;

注意⚠️

  • 数组必须为有序数组;
  • 确定数组中是否有相同元素,若有,则需要自己处理掉,即无重复元素;

🐲第一个错误的版本

你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。

假设你有 n 个版本 [1, 2, ..., n],你想找出导致之后所有版本出错的第一个错误的版本。

你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。

示例 1:
输入:n = 5, bad = 4
输出:4

解释:
调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true
所以,4 是第一个错误的版本。

题目来源:https://leetcode.cn/problems/first-bad-version

分析:
由于此数组本身就是数字,且自增,所以,可以设置开始值为left = 1,末尾值right=n,中间值mid为向下取整的中间数;然后,就利用中间值,判断是否为正确版本,是正确版本,则正确区间为[mid+1, right],不是正确版本,则
正确区间为 [left, mid];当left=right,则输出正确值;

var solution = function(isBadVersion) {
   
  return function(n) {
   
        let left = 1, right = n;
        while (left < right) {
    // 循环直至区间左右端点相同
            const mid = Math.floor(left + (right - left) / 2); // 防止计算时溢出
            if (isBadVersion(mid)) {
   
                right = mid; // 错误版本,答案在区间 [left, mid] 中
            } else {
   
                left = mid + 1; //正确版本 答案在区间 [mid+1, right] 中
            }
        }
        // 此时有 left == right,区间缩为一个点,即为答案
        return left;
    };
};

🐲寻找旋转排序数组中的最小值

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:
输入:nums = [3,4,5,1,2]

输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。

题目来源:https://leetcode.cn/problems/find-minimum-in-rotated-sorted-array

分析:
由于目标值可能大于最大的数组元素,所以right值为数组长度,而不是数组的长度-1;

var searchInsert = function(nums, target) {
   
 let left = 0;right = nums.length;
 while(left < right){
   
     let mid = Math.floor(left+ (right-left)/2);
     if(nums[mid] < target){
   
         left = mid+ 1;
     }else{
   
         right = mid;
     }
 }
 return left;
};

结语

二分法,主要逻辑就是通过中间值和目标值的比较,然后缩小数组范围,最终得到答案,从问题中提炼出这个含义,就可以进行二分法的使用了,当然,在某些情况下,二分法也并不算得上最优解,按需取用即可!

目录
相关文章
|
1月前
|
存储 监控 算法
局域网监控其他电脑的设备信息管理 Node.js 跳表算法
跳表通过分层索引实现O(logn)的高效查询、插入与删除,适配局域网监控中设备动态接入、IP映射及范围筛选等需求,相比传统结构更高效稳定,适用于Node.js环境下的实时设备管理。
110 9
|
3月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
191 0
|
1月前
|
存储 监控 JavaScript
企业上网监控系统的恶意 URL 过滤 Node.js 布隆过滤器算法
布隆过滤器以低内存、高效率特性,解决企业上网监控系统对百万级恶意URL实时检测与动态更新的难题,通过概率性判断实现毫秒级过滤,内存占用降低96%,适配大规模场景需求。
222 3
|
1月前
|
存储 监控 算法
电脑管控软件的进程优先级调度:Node.js 红黑树算法
红黑树凭借O(log n)高效插入、删除与查询特性,适配电脑管控软件对进程优先级动态调度的高并发需求。其自平衡机制保障系统稳定,低内存占用满足轻量化部署,显著优于传统数组或链表方案,是实现关键进程资源优先分配的理想选择。
131 1
|
2月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
232 3
|
6月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
181 4
|
6月前
|
监控 算法 JavaScript
公司局域网管理视域下 Node.js 图算法的深度应用研究:拓扑结构建模与流量优化策略探析
本文探讨了图论算法在公司局域网管理中的应用,针对设备互联复杂、流量调度低效及安全监控困难等问题,提出基于图论的解决方案。通过节点与边建模局域网拓扑结构,利用DFS/BFS实现设备快速发现,Dijkstra算法优化流量路径,社区检测算法识别安全风险。结合WorkWin软件实例,展示了算法在设备管理、流量调度与安全监控中的价值,为智能化局域网管理提供了理论与实践指导。
182 3
|
8月前
|
监控 算法 JavaScript
企业用网络监控软件中的 Node.js 深度优先搜索算法剖析
在数字化办公盛行的当下,企业对网络监控的需求呈显著增长态势。企业级网络监控软件作为维护网络安全、提高办公效率的关键工具,其重要性不言而喻。此类软件需要高效处理复杂的网络拓扑结构与海量网络数据,而算法与数据结构则构成了其核心支撑。本文将深入剖析深度优先搜索(DFS)算法在企业级网络监控软件中的应用,并通过 Node.js 代码示例进行详细阐释。
178 2
|
8月前
|
存储 算法 JavaScript
基于 Node.js 深度优先搜索算法的上网监管软件研究
在数字化时代,网络环境呈现出高度的复杂性与动态性,上网监管软件在维护网络秩序与安全方面的重要性与日俱增。此类软件依托各类数据结构与算法,实现对网络活动的精准监测与高效管理。本文将深度聚焦于深度优先搜索(DFS)算法,并结合 Node.js 编程语言,深入剖析其在上网监管软件中的应用机制与效能。
119 6
|
8月前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

热门文章

最新文章