深度学习网络大杀器之Dropout——深入解析Dropout

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 本文详细介绍了深度学习中dropout技巧的思想,分析了Dropout以及Inverted Dropout两个版本,另外将单个神经元与伯努利随机变量相联系让人耳目一新。

首发地址:https://yq.aliyun.com/articles/68901


更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud


过拟合深度神经网DNN)中的一个常见问题:模型只学会训练集分类这些年提出的许多拟合问题解决方案;其中dropout具有简单并取得良好的结果

Dropout

7e31586d15d887ae0901452e2e1b1c6cb94f882e

上图为Dropout的可视化表示,左边是应用Dropout之前的网络,右边是应用了Dropout的同一个网络。

Dropout的思想是训整体DNN,并平均整个集合的结果,而不是训练单个DNNDNNs以概率P舍弃部分神经元其它神经元以概率q=1-p被保留舍去的神经元的输出都被设置为零。

引述作者

在标准神经网络中,每个参数的导数告诉应该如何改变,以致损失函数最后被减少因此神经元可以通过这种方式修正其他单的错误。但这可能导致复杂的协调,反过来导致过拟合,因为这些协调没有推广到未知数据。Dropout通过使其他隐藏单元存在不可靠来防止共拟合。

简而言之:Dropout在实践很好工作因为在训阶段阻止神经元的共适应。

Dropout如何工作

Dropout以概率p舍弃神经元并让其它神经元以概率q=1-p保留。每个神经元被关闭的概率是相同的。这意味着:

假设:

h(x)=xW+bdi维的输入xdh维输出空间上的线性投影;

a(h)是激活函数

在训练阶段中,将假设的投影作为修改的激活函数:

650f8f00ffeb3ef346a61ee248670abe173c4acb

其中D=(X1,...,Xdh)dh维的伯努利变量Xi伯努利随机变量具有以下概率质量分布:

32363b313f65d3bf4231c5c57eace39d6fb7cb2c

其中k是可能的输出。

Dropout应用在第i个神经元上:

8899c12575bca1550dfd8127fd7eb0a2912a8f2a

其中P(Xi=0)=p

由于在训练阶段神经元保持q概率,在测试阶段必须仿真出在训练阶段使用的网络集的行为。

为此,作者建议通过系数q来缩放激活函数:

训练阶段fdb59b52bfa583cf08eaf7980e26e8fad453d148

测试阶段d6a2b220ee68540890eaf0dc537188c738600fb7

Inverted Dropout

dropout稍微不同。该方法在训练阶段期间对激活值进行缩放,而测试阶段保持不变。

倒数Dropout的比例因子为223ab9380c566fb9a74ff8a0a127e1174593bdf8,因此:

训练阶段:6ebd718f4256f50134f7428bc5df4d3cc9ddceae

测试阶段6ccbf2b63a56155b6403093e8771952bb3e3515b

Inverted DropoutDropout在各种深度学习框架实践中实现的,因为它有助于一次性定义模型,并只需更改参数(保持/舍弃概率)就可以在同一模型上运行训练和测试过程

一组神经元的Dropout

n个神经元的第h层在每个训练步骤中可以被看作是n个伯努利实验的集合,每个成功的概率等于p

因此舍弃部分神经元后h层的输出等于:

f580cf9006a568171c48ac7ec10f1d8997bf7d81

因为每一个神经元建模为伯努利随机变量,且所有这些随机变量是独立同分布的,舍去神经元的总数也是随机变量,称为二项式:

023627f0453afe34e4bebb9ee10dfb7678d87989

n次尝试中有k次成功的概率由概率质量分布给出:

55460b3bb5d23fc5fbc732366679150a56a67fec

当使用dropout,定义了一个固定的舍去概率p对于选定的层,成比例数量的神经元被舍弃

3be3ad14ec1d82ebafe981d1d3fc40ef6132e020

图可以看出,无论p是多少舍去的平均神经元数量均衡为np

933a160e2ead33c8ea51c1c7d41a69d3bb369eda

此外可以注意到,围绕在p = 0.5附近的分布对称。

Dropout与其它正则化

Dropout通常使用L2归一化以及其他参数约束技术。正则化有助于保持较小的模型参数

L2归一化是损失附加项,其中λ是一种超参数F(W;x)是模型以及ε真值y和预测值y^之间的误差函数。

e596c69e772f833df283a96e806dde994d8b979d

通过梯度下降进行反向传播,减少了更新量。

a762ce896975e697de82661ee4e69a11f6e92fad

Inverted Dropout和其他正则化

由于Dropout不会阻止参数增长和彼此压制,应用L2正则化可以起到作用

明确缩放因子上述等式变为:

337e71fd721fded5b9298cad73ba6c3310057d6c

可以看出使用Inverted Dropout,学习率是由因子q进行缩放 。由于q[0,1]之间,ηq之间的比例变化:

71cf583c223c9f4e2d7a3021640ae747b9f5dacd

q称为推动因素,因为其能增强学习速率,将r(q)称为有效的学习速率

有效学习速率相对于所选的学习速率而言更高:基于此约束参数值的规化可以帮助简化学习速率选择过程。

总结

Dropout存在两个版本:直接(不常用)和反转

单个神经元上的dropout可以使用伯努利随机变量建模

可以使用二项式随机变量来对一组神经元上的舍弃进行建模

即使舍弃神经元恰巧为np的概率是低的,但平均上np神经元被舍弃

Inverted Dropout提高学习率

Inverted Dropout应该与限制参数值的其他归一化技术一起使用,以便简化学习速率选择过程

Dropout有助于防止深层神经网络中的过度拟合


作者介绍:Paolo Galeone,计算机工程师以及深度学习研究者,专注于计算机视觉问题的研究


bafcc5518a0f203dc66a08af1dd9a6ce1e386173


Bloghttps://pgaleone.eu/

Linkedinhttps://it.linkedin.com/in/paolo-galeone-6782b311b

Twitterhttps://twitter.com/paolo_galeone


以上为译文

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《Analysis of Dropout》,作者:Paolo Galeone,译者:海棠,审校:我是主题曲哥哥。

文章为简译,更为详细的内容,请查看原文

 翻译者: 海棠 

Wechat:269970760 

Email:duanzhch@tju.edu.cn

微信公众号:AI科技时讯

157f33dddfc596ede3681e0a2a0e7068dc288cc1

目录
相关文章
|
16天前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
167 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
12天前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
6天前
|
XML JavaScript Android开发
【Android】网络技术知识总结之WebView,HttpURLConnection,OKHttp,XML的pull解析方式
本文总结了Android中几种常用的网络技术,包括WebView、HttpURLConnection、OKHttp和XML的Pull解析方式。每种技术都有其独特的特点和适用场景。理解并熟练运用这些技术,可以帮助开发者构建高效、可靠的网络应用程序。通过示例代码和详细解释,本文为开发者提供了实用的参考和指导。
47 15
|
15天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
52 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
7天前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
7天前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
108 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
16天前
|
缓存 边缘计算 安全
阿里云CDN:全球加速网络的实践创新与价值解析
在数字化浪潮下,用户体验成为企业竞争力的核心。阿里云CDN凭借技术创新与全球化布局,提供高效稳定的加速解决方案。其三层优化体系(智能调度、缓存策略、安全防护)确保低延迟和高命中率,覆盖2800+全球节点,支持电商、教育、游戏等行业,帮助企业节省带宽成本,提升加载速度和安全性。未来,阿里云CDN将继续引领内容分发的行业标准。
63 7
|
22天前
|
云安全 人工智能 安全
阿里云网络安全体系解析:如何构建数字时代的"安全盾牌"
在数字经济时代,阿里云作为亚太地区最大的云服务提供商,构建了行业领先的网络安全体系。本文解析其网络安全架构的三大核心维度:基础架构安全、核心技术防护和安全管理体系。通过技术创新与体系化防御,阿里云为企业数字化转型提供坚实的安全屏障,确保数据安全与业务连续性。案例显示,某金融客户借助阿里云成功拦截3200万次攻击,降低运维成本40%,响应时间缩短至8分钟。未来,阿里云将继续推进自适应安全架构,助力企业提升核心竞争力。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
100 17

推荐镜像

更多