带你读《2022技术人的百宝黑皮书》——基于特征全埋点的精排ODL实践总结(8) https://developer.aliyun.com/article/1246856?groupCode=taobaotech
业务效果
在淘宝每平每屋频道首页推荐tab场景中,我们分别在日常和大促期间进行了线上AB实验,结果表明ODL模型相较于天级更新的模型具有明显的效果提升。在日常期间CTR+7.83%/人均曝光+2.15%/人均点击+10.15%/人均详情页点击+9.56%。在双11当天ODL模型在浏览深度和二跳转化目标的提升上更加显著,CTR+7.04%/人均曝光+3.94%/人均点击+11.26%/人均详情页点击+13.03%,说明ODL模型在流量分布发生剧烈变化的情况下的快速适应能力。
ODL流样本中使用到了全埋点特征,我们在离线批模型中单独验证了全埋点特征的收益,在日常期间CTR+6.83%/人均曝光+0.82%/人均点击+7.70%/人均详情页点击+7.11%,ODL在此基础上进一步提升了人均浏览篇数和点击效率。
总结
实时化对于推荐系统捕捉用户的兴趣和流量分布变化非常关键,本文介绍了每平每屋频道精排模型向ODL升级的实践总结,深度模型的在线学习对整个系统具有极大的挑战,充分利用集团内部的平台和工具可以大幅缩短ODL链路搭建所需的时间,推动在线学习的落地并取得收益。
未来我们会在模型的在线学习方面进行持续的迭代和优化,包括将其扩展至重排/粗排以及冷启动等环节,探索流式训练场景下的数据Non-IID问题/label延迟问题以及参数更新梯度衰减等问题,并进一步提升实时链路的稳定性和正确性,以期获得更大的业务效果。
团队介绍
大淘宝技术-淘宝智能团队
淘宝智能团队是一支数据和算法一体的团队,服务于淘宝、天猫、聚划算、闲鱼和每平每屋等业务线的二十余个业务场景,提供线上零售、内容社区、3D智能设计和端上智能等数据和算法服务。我们通过机器学习、强化学习、数据挖掘、机器视觉、NLP、运筹学、3D算法、搜索和推荐算法,为千万商家寻找商机,为平台运营提供智能化方案,为用户提高使用体验,为设计师提供自动搭配和布局,从而促进平台和生态的供给繁荣和用户增长,不断拓展商业边界。
这是一支快速成长中的学习型团队。在创造业务价值的同时,我们不断输出学术成果,在KDD、ICCV、Management Science等国际会议和杂志上发表数篇学术论文。团队学习氛围浓厚,每年组织上百场技术分享交流,互相学习和启发。真诚邀请海内外相关方向的优秀人才加入我们,在这里成长并贡献才智。
如果您有兴趣可将简历发至weichen.swc@alibaba-inc.com,期待您的加入!