深度学习入门笔记4 深度神经网络

简介: 深度学习入门笔记4 深度神经网络

多层感知器

在之前的课程中,我们了解到,感知器(指单层感知器)具有一定的局限——无法解决异或问题,即线性不可分的问题。

将多个单层感知器进行组合,就可以得到一个多层感知器(MLP——Multi-Layer Perceptron)结构。 多层感知器包含输入层,一个或多个隐藏层以及一个输出层。每层的神经元与下一层进行完全连接。

如果网络中包含一个以上的隐层,则称其为深度人工神经网络

说明:

  • 通常我们说的神经网络的层,指具有计算的层,因为输入层没有计算,因此,通常输入层不计入神经网络的层次。
  • 多层感知器(深度神经网络)可以解决线性不可分问题。

激活函数

激活函数概念

在神经网络中,激活函数用来为每一个结点(神经元)定义输出,该输出可以作为下一个结点(神经元)的输入。

激活函数的作用

激活函数提供网络的非线性建模能力。如果不使用激活函数,即使是多层神经网络,也无法解决线性不可分的问题。

激活函数的特征

激活函数的一些属性:

  • 非线性 可以解决非线性可分问题。当激活函数是线性时,多层神经网络相当于单层神经网络。
  • 范围性 当激活函数是有限范围时,基于梯度的训练方法往往更稳定,因为模式呈现仅显着影响有限的权重。当范围无限时,训练通常更有效,因为模式呈现显着影响大多数权重。在后一种情况下,通常需要较小的学习率。
  • 可微性 该属性用来实现基于梯度的优化方法。
  • 单调性 当激活函数是单调的时,与单层模型相关联的误差表面保证是凸的。
  • 平滑性并且具有单调导数 在某些情况下,这些函数已被证明更为普遍。
  • 原点中心化 当激活函数具有此属性时,使用较小的随机值初始化权重,可以让神经网络学习更加有效(更有利于权重的更新)。否则,在初始化权重时必须特别小心。如果函数f满足以下条件,则表明函数是原点中心化的。
  • f(0)=0
  • f(0)=1
  • 导函数在0点处连续

常见激活函数

常见的激活函数如下:

  • 阶跃函数
  • sigmoid函数
  • tanh函数
  • relu函数

练习

画出各种激活函数在[-10, 10]区间的图像。

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-10, 10, 0.1)
y = np.where(x >= 0, 1, 0)
plt.plot(x, y)
x = np.arange(-10, 10, 0.1)
y = 1 / (1 + np.exp(-x))
plt.plot(x, y)
x = np.arange(-10, 10, 0.1)
y = (np.exp(x) - np.exp(-x)) /(np.exp(x) + np.exp(-x))
plt.plot(x, y)
x = np.arange(-10, 10, 0.1)
y = np.where(x >= 0, x, 0)
plt.plot(x, y)
## 学习步骤
多层感知器(深度神经网络DNN)的学习过程步骤如下:
1. 从输入层开始,通过网络进行正向传播(forward propagation),并计算输出。
2. 根据输出与真实值,计算误差。
3. 反向传播(back propagation)误差,根据误差值,更新每层的权重。

人工神经网络学习过程

前向传播

计算误差

反向传播

权重的初始化

注意,在深度神经网络中,权重一定不能全部初始化为0,否则,在正向传播时,所有的神经元都会得到相同的值,同时,在反向传播时,权重也会更新相同的值。这会使得神经网络拥有不同权重的意义不复存在。


相关文章
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
8天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
27 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
7天前
|
消息中间件 编解码 网络协议
Netty从入门到精通:高性能网络编程的进阶之路
【11月更文挑战第17天】Netty是一个基于Java NIO(Non-blocking I/O)的高性能、异步事件驱动的网络应用框架。使用Netty,开发者可以快速、高效地开发可扩展的网络服务器和客户端程序。本文将带您从Netty的背景、业务场景、功能点、解决问题的关键、底层原理实现,到编写一个详细的Java示例,全面了解Netty,帮助您从入门到精通。
25 0
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
26 0
|
11天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
22 0
|
9天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
40 9
|
5天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
6天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。