带你读《5G 系统技术原理与实现》——1.3.1 SA 组网和NSA 组网

简介: 带你读《5G 系统技术原理与实现》——1.3.1 SA 组网和NSA 组网

1.3 5G 网络组网部署


3GPP 针对5G 移动通信系统确定了两种组网策略,分别是SA(StandAlone,独立)组网和NSA(Non-StandAlone,非独立)组网。3GPP R15 标准确定前,各个合作伙伴或组织提出了很多解决方案,最终,8 种方案脱颖而出。后续在5G 网络建设过程中,经常会被提及的方案有5 种,世界各国可以根据业务发展需要、现有网络资源、可用频谱、配套终端等因素,选择不同的5G 网络部署方式和5G 网络建设计划。


1.3.1 SA 组网和NSA 组网


SA 组网是指使能5G 网络不需要其他移动通信系统的辅助,5G 网络可以独立进行工作。NSA 组网是指使能5G 网络需要其他移动通信系统的辅助,如果辅助缺失,那么5G 网络就无法独立进行工作。通常而言,对于我国的5G 网络建设,NSA 组网方式是指5G 网络的使用需要4G 网络的辅助。


1.SA 组网选项

5G 移动通信系统的接入网有两种:NG-eNB 和gNB。NG-eNB 和gNB 都可以独立地承担与核心网控制面和用户面的连接,不需要其他接入网网元辅助。针对5G 移动通信系统,3GPP 确定的SA 组网方案如图1-21 所示,其中左侧方案的接入网用gNB 表示,称之为Option2;右侧方案的接入网用NG-eNB 表示,称之为Option5。

image.png

图1-21 SA 组网方案


在SA 组网场景下,UE、NG-RAN、传输网以及5GC 都需要重新部署,相当于完全新建一个5G 网络,投资巨大。


2.NSA 组网选项

NSA 组网是指依托现有的4G 基础设施进行5G 网络部署。在NSA 组网场景下,5G 网络仅承载用户数据,控制信令仍通过4G 网络传输。NSA 组网的需求主要表现为行业发展的实际水平、现阶段网络建设成本以及5G 网络尽早商用。NSA 组网是一种过渡性解决方案。目的是满足运营商连续提供优质服务,充分利用现有移动通信网络资源、完成5G 网络快速部署的实际需求。


较之于SA 组网,NSA 组网架构下的5G 接入网不能独立承担与核心网用户面和控制面的连接,需要借助4G 移动通信系统完成连接。此时,与核心网之间具有控制面连接的接入网网元称为MN(Master Node,主节点);与核心网之间没有直接的控制面连接的接入网网元称为SN(Secondary Node,辅节点)。针对5G 移动通信系统,3GPP 确定的NSA 方案共包括三个系列:Option3 系列,Option7 系列和Option4 系列。


(1)Option3 系列

在NSA Option3 系列中,核心网采用4G 核心网(EPC),主节点是4G 基站(eNB),辅节点是5G 基站(en-gNB)。此时,5G 基站接入4G 核心网,这里需要对gNB 进行改造使其可以接入4G 核心网,改造后的gNB 称为en-gNB。4G 基站(eNB)和5G 基站(en-gNB)共用4G 核心网(EPC),LTE eNB 和en-gNB 用户面直接连接到EPC,控制面仅由LTE eNB连接到EPC。NSA Option 3 系列包括Option3、Option3a 和Option3x。3GPP 确定的NSAOption 3 系列如图1-22 所示。

image.png

图1-22 NSA Option 3 系列


Option3、Option3a 和Option3x 3 种架构的区别主要是业务数据分流点所处的位置不同。Option3 的业务数据分流点位于eNB;Option3a 的业务数据分流点位于EPC;Option3x 的业务数据分流点可以位于EPC,也可以位于gNB。相比较而言,Option3x 架构的灵活性更强,数据可以在核心网或接入网网元之间进行分流,gNB 的能力远远强于eNB,所以Option3x架构更加能够发挥5G 网络的性能。


在NSA Option 3 系列中,用户面数据可以单独通过4G 基站(eNB)、5G 基站(gNB)发送给UE,也可以同时通过4G/5G 基站发给UE。同时通过4G/5G 基站发给UE 的方式,我们称之为分离发送,即同一时间,部分数据通过4G 基站(eNB)发送给UE,另外一部分数据通过5G基(gNB)发送给UE。NSA Option 3 系列的优势在于不必新增5G 核心网,利用运营商现有4G 网络基础设施快速部署5G,抢占热点区域,以较低的网络建设成本快速完成5G 网络商用。


(2)Option7 系列

如果将Option3 系列中的核心网由4G 核心网(EPC)更换为5G 核心网(5GC),主节点仍然是4G 基站(eNB),变更之后的方案称之为Option7。在Option7 系列中,4G基站(eNB)需要进行改造以支撑5GC,改造后的eNB 称为NG-eNB。此时,辅节点是5G 基站(gNB)。在Option7 系列中,4G 基站(NG-eNB)和5G 基站(gNB)共用5G 核心网(5GC),NGeNB和gNB 用户面直接连接到5GC,控制面仅由NG-eNB 连接到5GC。NSA Option7 系列包括Option7、Option7a 和Option7x。3GPP 确定的NSA Option7 系列如图1-23 所示。

image.png

图1-23 NSA Option7 系列


在Option7 系列中,由于核心网由EPC 变换为5GC,所以接入网网元之间的接口变换为Xn 接口,接入网与核心网之间的接口变换为NG 接口,这一点需要格外注意Option7、

Option7a 和Option7x 这3 种架构的区别主要是业务数据分流点所处的位置不同。Option7 的业务数据分流点位于NG-eNB;Option7a 的业务数据分流点位于5GC;Option7x 的业务数据分流点可以位于5GC,也可以位于NG-eNB。相比较而言,Option7x 架构的灵活性更强,数据可以在核心网或接入网网元之间进行分流,gNB 的能力远远强于NG-eNB,所以Option7x架构更能够发挥5G 网络的性能。


在这一系列中,5G 核心网替代了4G 核心网,解决了4G 核心网信令过载的问题。这种方案的弊端在于4G 基站的能力弱于5G 基站,利用升级之后的4G 基站挂接5G 核心网,这极大地限制了5G 核心网性能的发挥。


(3)Option4 系列

Option4 系列中的核心网依旧是5G 核心网5GC,但是主节点变更为5G 基站gNB,变更之后的方案称之为Option4。由于核心网依旧是5GC,所以需要对4G 基站(eNB)进行改造以支撑5GC,改造后的eNB 称为NG-eNB。此时,辅节点是4G 基站(NG-eNB)。在Option4系列中,4G 基站(NG-eNB)和5G 基站(gNB)共用5G 核心网(5GC),NG-eNB 和gNB用户面直接连接到5GC,控制面仅由gNB 连接到5GC。NSA Option4 系列包括:Option4 和Option4a。3GPP 确定的NSA Option4 系列如图1-24 所示。

image.png

图1-24 NSA Option4 系列


在Option4 系列中,接入网网元之间的接口为Xn 接口,接入网与核心网之间的接口为NG 接口。Option4 和Option4a 两种架构的区别主要是业务数据分流点所处的位置不同。Option4 的业务数据分流点位于gNB;Option4a 的业务数据分流点位于5GC。Option4 系列已是5G 网络的成熟期形态。如果5G 网络具备了实施Option4 系列的能力,那么表示5G 网络已基本具备了实施Option2 的能力,所以Option4 系列出现在5G 网络建设中的概率较低。


3.SA 组网与NSA 组网对比

为了避免学习过程中对各种基站名称的理解出现问题,3GPP 协议标准中,4G 与5G 无线接入网的实现方式定义如下。


eNB:面向终端提供E-UTRA 用户面和控制面协议,并且通过S1 接口连接到EPC网络节点。

NG-eNB:面向终端提供E-UTRA 用户面和控制面协议,并且通过NG 接口连接到5GC 网络节点。

gNB:面向终端提供NR 用户面和控制面协议,并且通过NG 接口连接到5GC 网络节点。

en-gNB:面向终端提供NR 用户面和控制面协议,并且通过S1 接口连接到EPC 网络节点。


5G 网络成熟阶段的目标是Option 2,其能够支持5G 所有场景和业务,摒弃之前系统固有的一些技术问题,使得移动通信系统在功能和性能上更加容易提升。但是在实际网络建设过程中,除了技术层面,还需要考虑成本、收益以及行业的发展水平。在5G 网络建设初期,选择Option 2 会面临一些问题,例如,成本投入大,覆盖连续性难以保证,需要终端支持5G 新空口协议等。SA 和NSA 组网方案对比如表1-2 所示。


表1-2 SA 和NSA 组网方案对比

image.png

NSA 组网方式存在的必然性:基于成熟的4G 网络快速完成5G 网络覆盖,与4G 网络联合组网扩大5G 单站覆盖范围;NSA 标准的确定时间早于SA 标准,因此NSA 产品更丰富、测试工作更充分、产业链更成熟;在NSA 组网下,核心网将利用现有4G 核心网,节约了5G核心网的建设时间和建设成本;NSA部署时间短、见效快,有助于运营商进行品牌推广;NSA 用户不换卡,不换号即可升级到5G 网络,有利于5G 业务的推广。

相关文章
|
3天前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
15 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
60 2
|
17天前
|
监控 安全 测试技术
网络信息系统的整个生命周期
网络信息系统规划、设计、集成与实现、运行维护及废弃各阶段介绍。从企业需求出发,经过可行性研究和技术评估,详细设计系统架构,完成设备安装调试和系统集成测试,确保稳定运行,最终安全退役。
31 1
网络信息系统的整个生命周期
|
3天前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
22 3
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
安全 定位技术 数据安全/隐私保护
|
17天前
|
机器学习/深度学习 存储 运维
图神经网络在复杂系统中的应用
图神经网络(Graph Neural Networks, GNNs)是一类专门处理图结构数据的深度学习模型,近年来在复杂系统的研究和应用中展现了强大的潜力。复杂系统通常涉及多个相互关联的组件,其行为和特性难以通过传统方法进行建模和分析。
40 3
|
17天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
1月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
46 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
域名解析 缓存 网络协议
【网络】DNS,域名解析系统
【网络】DNS,域名解析系统
96 1