基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。

1.程序功能描述
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真。分别对三维空间的节点覆盖率,节点覆盖使用数量进行优化,以较少的节点,完成较大的覆盖率优化。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

1.jpeg
2.jpeg
3.jpeg

(完整程序运行后无水印)

3.核心程序

``% 获取最佳解并绘制优化后的节点部署
[V,I] = min(Jit1);
Xbest = Xga(I,1:Nnode);
Ybest = Xga(I,1+Nnode:Nnode+Nnode);
Zbest = Xga(I,1+Nnode+Nnode:Nnode+Nnode+Nnode);
Nbest = round(Xga(I,end));

subplot(122);
for i=1:Nbest
func_cover([Xbest(i),Ybest(i),Zbest(i)],rd); % 调用函数绘制覆盖区域
hold on
plot3(Xbest(i),Ybest(i),Zbest(i),'b.'); % 绘制节点位置
hold on
i=i+1; % 循环计数增加,但此处实际无必要,因为已在for循环定义了范围
end
axis([-rd,width+rd,-rd,high+rd,-rd,zH+rd]); % 设置坐标轴范围

[Coverage1,Coverage2] = func_fitness(Xbest,Ybest,Zbest,Nbest);
title(['优化后','WSN节点数量:',num2str(Nbest),',WSN覆盖率:',num2str(100*Coverage1),'%']);

figure;
subplot(121);
bar([Nnode,Nbest]);
xlabel('1:优化前, 2:优化后');
ylabel('节点数量');

subplot(122);
bar([100Coverage1b,100Coverage1]);
xlabel('1:优化前, 2:优化后');
ylabel('覆盖率%');

% 绘制适应度变化曲线
figure
plot(Favg,'b','linewidth',1); % 平均适应度曲线
xlabel('迭代次数');
ylabel('适应度值');
grid on

```

4.本算法原理
在三维空间部署WSN时,面临的主要挑战包括:

空间覆盖度:如何在三维空间内实现有效覆盖,确保所有监测区域都能被传感器节点监测到。
连通性:保持网络连通,即使在网络节点发生故障的情况下也要确保数据传输的有效性和可靠性。
能耗管理:合理分配传感器节点的能源,延长整个网络的生命周期。
部署成本:考虑经济因素,优化节点数量和位置以降低成本。
在本课题中,基于GA优化的三维空间WSN节点部署算法的目标是:

最大化空间覆盖度:确保每个监测区域都有足够的传感器覆盖。
最小化节点数量:在保证覆盖度和连通性的前提下,尽量减少节点数量以降低成本。
空间覆盖度模型
假设监测区域为一个三维空间,其体积为 V,节点总数为N,每个节点的感知半径为r。定义节点i在三维空间的位置为(xi​,yi​,zi​)。
cd54dc6d3e73fa4d37db684d37d36029_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

在实际开发过程中,采用网格填充法,近似的计算节点覆盖率。

基于GA的优化方法
染色体编码:每个染色体代表一个节点部署方案,其中染色体的长度为3N,前 N 位表示x 坐标,接下来N 位表示y 坐标,最后N 位表示 z 坐标。

适应度函数综合考虑了空间覆盖度、连通性和能耗三个因素:

d624ba5e4aa619c37943ebbb82593496_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于GA优化的三维空间WSN节点部署算法能够有效地解决三维空间部署面临的挑战,如空间覆盖度、连通性、能耗管理和成本控制等问题。通过建立精确的数学模型和采用有效的遗传算法,可以显著改善WSN在三维空间中的性能。未来的研究将继续探索更高效的优化算法和更复杂的部署场景,以应对不断发展的WSN技术和应用场景。
相关文章
|
5天前
|
传感器 算法 安全
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
117 64
|
8天前
|
算法 调度
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。
|
6天前
|
存储 算法 数据安全/隐私保护
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
10天前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
30 4
|
25天前
|
算法
基于BigBangBigCrunch优化(BBBC)的目标函数求解算法matlab仿真
本程序基于BigBang-BigCrunch优化算法(BBBC)实现目标函数求解的MATLAB仿真,具备良好的全局搜索与局部收敛能力。程序输出适应度收敛曲线及多变量变化曲线,展示算法迭代过程中的优化趋势。使用MATLAB 2022A运行,通过图形界面直观呈现“大爆炸”与“大坍缩”阶段在解空间中的演化过程,适用于启发式优化问题研究与教学演示。
|
11月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
439 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
11月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
267 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
11月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
427 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章