YOLOv4 改进 | 记录如何一步一步改进YOLOv4到自己的数据集(性能、速度炸裂)(二)

简介: YOLOv4 改进 | 记录如何一步一步改进YOLOv4到自己的数据集(性能、速度炸裂)(二)

3实验结果


3.1 激活函数的影响

3.2 残差CSP1-n和CSP2-n的影响

image.png

3.3 SOTA对比结果

image.png

3.4 实时性对比

3.5 可视化对比


4参考


[1].A fast accurate fine-grain object detection model based on YOLOv4 deep neural network

相关文章
|
6月前
|
机器学习/深度学习 算法 固态存储
最强DETR+YOLO | 三阶段的端到端目标检测器的DEYOv2正式来啦,性能炸裂!!!
最强DETR+YOLO | 三阶段的端到端目标检测器的DEYOv2正式来啦,性能炸裂!!!
230 0
|
4月前
|
机器学习/深度学习 编解码 人工智能
|
14天前
|
机器学习/深度学习 人工智能 计算机视觉
YOLOv11 正式发布!你需要知道什么? 另附:YOLOv8 与YOLOv11 各模型性能比较
YOLOv11是Ultralytics团队推出的最新版本,相比YOLOv10带来了多项改进。主要特点包括:模型架构优化、GPU训练加速、速度提升、参数减少以及更强的适应性和更多任务支持。YOLOv11支持目标检测、图像分割、姿态估计、旋转边界框和图像分类等多种任务,并提供不同尺寸的模型版本,以满足不同应用场景的需求。
YOLOv11 正式发布!你需要知道什么? 另附:YOLOv8 与YOLOv11 各模型性能比较
|
5月前
|
测试技术 计算机视觉
【YOLOv8性能对比试验】YOLOv8n/s/m/l/x不同模型尺寸大小的实验结果对比及结论参考
【YOLOv8性能对比试验】YOLOv8n/s/m/l/x不同模型尺寸大小的实验结果对比及结论参考
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLO性能对比试验】YOLOv9c/v8n/v6n/v5n的训练结果对比及结论参考
【YOLO性能对比试验】YOLOv9c/v8n/v6n/v5n的训练结果对比及结论参考
|
6月前
|
存储 数据可视化 计算机视觉
基于YOLOv8的自定义数据姿势估计
基于YOLOv8的自定义数据姿势估计
|
机器学习/深度学习
一些关于Yolov5的改进点及实验结果(新增YOLOv5网络结构图)
一些关于Yolov5的改进点及实验结果(新增YOLOv5网络结构图)
一些关于Yolov5的改进点及实验结果(新增YOLOv5网络结构图)
|
机器学习/深度学习 编解码 算法
YOLOv4 改进 | 记录如何一步一步改进YOLOv4到自己的数据集(性能、速度炸裂)(一)
YOLOv4 改进 | 记录如何一步一步改进YOLOv4到自己的数据集(性能、速度炸裂)(一)
183 0
|
机器学习/深度学习 编解码 自动驾驶
YOLO-Z | 记录修改YOLOv5以适应小目标检测的实验过程
YOLO-Z | 记录修改YOLOv5以适应小目标检测的实验过程
266 0
|
测试技术 PyTorch TensorFlow
Yolov5-6.2 正式发布 | Yolov5 也可以训练分类模型啦,语义分割+实例分割很快到来
Yolov5-6.2 正式发布 | Yolov5 也可以训练分类模型啦,语义分割+实例分割很快到来
551 0