AB Test如何应用于风控场景?

简介: AB Test是一个很好的导航系统和说理工具,策略分析师在各个场景使用这种分析方法,可以形成一个完整的闭环;本文作者分享了关于AB Test如何应用于风控场景,我们一起来看一下。

一、A/B Test 概念

什么是AB Test?

1)我们先通过一张图来了解系统的概念,做一做铺垫:系统,就是将多个输入转化成输出的中间过程(图中的输入,也称为变量)。ps:有数学背景的同学,可以把系统理解成一个多元函数y=f(x1,x2,x3)。

2)然后基于系统图导出控制变量法

由于影响系统输出的输入变量有多个,如果我们需要考察其中某一个输入变量(比如输入1)对系统输出的影响时;我们需要在保持输入2和输入3不变的前提下,改变输入1,然后观察输出的变化,从而确定输入1对输出的影响;这就是控制变量法,核心是控制其他变量不变,排除其交叉影响,单独观察某一个变量对结果的影响。

3)再基于控制变量法引出对照组的概念

当我们保持输入2和输入3不变,单独改变输入1时,我们需要在样本中确定有多大比例的样本(不)需要改变输入1,由此按比例随机抽样、从而形成两个相互对比的样本(改变输入1的一般称为实验组,不改变输入1的称为对照组)。

4)最后回到我们的核心概念AB Test

AB test就是通过随机抽样设置对照组和实验组,A是对照组,B是实验组,AB两组占比由实际场景决定(任意一组的占比一般不能太低,要满足统计学意义),加起来是100%。

由于是随机抽样,AB两组一开始是完全相同的样本;然后,改变一个变量,使得B相对A来说只有一个变量不同,从而可以将该变量单独拎出来、观察它对输出结果的影响:

对照组方法,是科学研究中用途极广的方法,有着坚实的统计学理论支撑;产品部门经常用到对照组方法,产品部一般称为AB Test,这种叫法比较通用,为方便交流,本文采用此种叫法;风控部门也经常用到对照组方法,一般称为“冠军挑战者”。

二、A/B Test 适用场景

以下我们针对常用的几个场景,给出基于AB test的解决方案,给大家展示AB test在风控中的典型应用场景、应用方式及其效果,希望大家能够举一反三,在自己的工作中能用上。

AB test方法应用灵活、基于实际场景千变万化,也有一些需要避免的问题,整个AB test机制包括需求分析、机制设计、数据分析、策略调整等,是一个完整的闭环。

场景一:无法确定策略调整的效果,找不到策略调整的方向

问题剖析:评估策略效果的指标大家都很明确,而无法明确效果,究其原因,是因为影响风控指标的输入变量有多个,包括客群质量、时间、风险策略等;而策略只是其中的一个变量,调整策略变量的同时,其他变量可能同时发生改变,因此无法确切评估策略的调整对风控指标的影响。至于策略的调整方向,AB两套策略的差异点你是完全知道的,这个差异是造成最终逾期率不同的唯一原因,找到其中大头的差异点,就是本次调整的方向。

场景二:已经明确要调整的具体规则,目前有多个方案,无法确认哪个方案最优

问题剖析:已经知道要收紧的具体的规则了,但是有多种收紧方案,在策略流程上,是前紧,还是前松后紧,着实让人无法抉择;因为在风险策略人员的视野里,不仅仅只有通过率、逾期指标;还有征信成本、数据信息量等其它纬度的考量因素。

解决方案:直接对确定调整的规则进行A/B Test 即可。

总结一下,策略的AB test机制,是一个很好的导航系统和说理工具,作为导航系统,它让策略人员在调整策略的时候,知道自己的方向,因此明明白白;作为说理工具,它让策略人员在展示自身工作对全局影响的时候,听众心服口服。


天眼数聚api接口大全以大数据为基础,覆盖人脸身份核实、运营商、银行卡、车辆、医疗、智能识别等,为企业用户提供多维度、全方位的数据API服务;目前已服务近万家企业,涵盖了教育、游戏、电商、物流、金融、保险、支付、出行等数十个领域,同时公司在数据采集、模型算法、机器学习等领域具有较强的技术优势,所推出的基于业界领先算法模型的活体检测、人脸身份证识别接口等智能识别服务广受好评。

相关文章
|
机器学习/深度学习 程序员 数据处理
时间序列分析技巧(一):根据ACF、PACF进行AR、MA、ARMA模型选择
时间序列分析技巧(一):根据ACF、PACF进行AR、MA、ARMA模型选择
|
10月前
|
负载均衡 Oracle 网络协议
Oracle中TAF与SCANIP全面解析
通过本文的解析,读者可以清晰地理解Oracle中TAF与SCAN IP的概念、工作原理及其在实际应用中的优势和局限性。TAF通过自动故障转移提升了会话的高可用性,而SCAN则通过简化客户端连接和负载均衡提升了集群的可管理性和扩展性。这两种技术在现代企业数据库架构中扮演着重要角色,能够显著提高系统的稳定性和可用性。
377 6
|
API 容器
Flutter 自定义实现时间轴、侧边进度条
Flutter 自定义实现时间轴、侧边进度条
391 0
|
大数据 数据挖掘 中间件
2022中国十大API接口服务平台排行榜(推荐五颗星)
2022中国十大API接口服务平台排行榜。
2465 0
2022中国十大API接口服务平台排行榜(推荐五颗星)
WK
|
12月前
|
机器学习/深度学习 算法 PyTorch
如何计算损失函数关于参数的梯度
计算损失函数关于参数的梯度是深度学习优化的关键,涉及前向传播、损失计算、反向传播及参数更新等多个步骤。首先,输入数据经由模型各层前向传播生成预测结果;其次,利用损失函数评估预测与实际标签间的差距;再次,采用反向传播算法自输出层逐层向前计算梯度;过程中需考虑激活函数、输入数据及相邻层梯度影响。针对不同层类型,如线性层或非线性层(ReLU、Sigmoid),梯度计算方式各异。最终,借助梯度下降法或其他优化算法更新模型参数,直至满足特定停止条件。实际应用中还需解决梯度消失与爆炸问题,确保模型稳定训练。
WK
390 0
|
分布式计算 并行计算 数据处理
|
机器学习/深度学习 存储 分布式计算
阿里开源首个DL框架,新型XDL帮你搞定大规模稀疏数据
12 月 21 日,阿里巴巴旗下的大数据营销平台阿里妈妈开源了其应用于自身广告业务的算法框架 X-Deep Learning(XDL)。该框架非常擅长处理高维稀疏数据,对构建推荐、搜索和广告系统非常有优势。此外,阿里还配套发布了一系列官方模型,它们都是阿里在实际业务或产品中采用的高效模型。
1430 0
阿里开源首个DL框架,新型XDL帮你搞定大规模稀疏数据
|
SQL 分布式计算 Hadoop
Apache Impala 的安装部署
Apache Impala 的安装部署
383 0
|
Web App开发 传感器 移动开发
sublime和vscode比较
主流前端开发编辑器 体积小,运行快,启动快 文本功能强大 支持编译,且可以在控制台看到输出 可安装大量插件,来满足定制化需求(ctrl+shift+p,ip,搜索插件安装) 轻量级,使用小项目
1339 0
sublime和vscode比较