Python 初识二叉树,新手也秒懂!(续:实战binarytree)

简介: Python 初识二叉树,新手也秒懂!(续:实战binarytree)

Python 初识二叉树,新手也秒懂! 续集之

——初步探索二叉树的第三方库 binarytree



第三方库 binarytree


其使用环境、安装方法及二叉树的相关知识,请见:《Python 初识二叉树,新手也秒懂!

不能导入的请安装:pip install binarytree


安装好了就导入库:import binarytree


主要的函数方法如下:

>>> import binarytree as bt
>>> 
>>> bt.__all__
['Node', 'tree', 'bst', 'heap', 'build', 'build2', 'get_parent', '__version__']
>>> 
>>> bt.__version__
'6.3.0'
>>> 

目前最新版本 V6.3.0,挑其中几个来探究一下二叉树的世界吧:


 

二叉树节点函数 Node()


函数原型:Node(NodeValue, LeftChildNode=None, LeftChildNode=None)

三个参数:NodeValue节点数值,必须为实数,int或float

    LeftChildNode, LeftChildNode 左右子树节点


通过创建节点,生成一棵3层的满二叉树:


>>> from binarytree import Node
>>>
>>> bt = Node(1)
>>>
>>> bt.left = Node(2)
>>> bt.right = Node(3)
>>> 
>>> bt.left.left = Node(4)
>>> bt.left.right = Node(5)
>>> bt.right.left = Node(6)
>>> bt.right.right = Node(7)
>>> 
>>> bt.pprint()
    __1__
   /     \
  2       3
 / \     / \
4   5   6   7
>>> 


如果要建很多层的满二叉树,用Node()逐个赋值有点麻烦。比如到第四层要给8个叶子赋值:

>>> bt.left.left.left = Node(8)
>>> bt.left.right.left = Node(10)
>>> bt.right.left.left = Node(12)
>>> bt.right.right.left = Node(14)
>>> bt.left.left.right = Node(9)
>>> bt.left.right.right = Node(11)
>>> bt.right.left.right = Node(13)
>>> bt.right.right.right = Node(15)


每多一层叶子数就翻一倍,为了方便我想到用exec()函数把字符串转成变量操作赋值的方法予以简化代码。自定义函数 createPerfectTree(intTreeLevels, listTreeData),参数为需要指定的层数和节点赋值数据,分别是整数和列表类型;函数返回值为一个满二叉树。代码如下:


from binarytree import Node
def createPerfectTree(intTreeLevels, listTreeData):
    if len(listTreeData)+1<2**intTreeLevels or intTreeLevels<1:
        return None
    t,tmp = ['root'],[]
    data = listTreeData[::-1]
    root = Node(data[-1])
    data.pop()
    for j in range(intTreeLevels-1):
        for i in t:
            exec(i + f'.left=Node({data[-1]})')
            data.pop()  
            exec(i + f'.right=Node({data[-1]})')
            data.pop()
            tmp.append(i + '.left')
            tmp.append(i + '.right')
        t=tmp[:]
        tmp=[]
    return root
# 打印各节点值为整数序列的满二叉树(0~6层)
for i in range(7):
    data = [*range(1,2**i)]
    print(createPerfectTree(i, data))
# 用指定列表的数据,创建满二叉树
data = [15,0,7,2,6,4,3,1,5,6,7,9,34,23,8]
print(createPerfectTree(3, data))
print(createPerfectTree(4, data))
print(createPerfectTree(5, data))  # data长度不够返回:None
# 赋值后列印
root = createPerfectTree(4, [*range(1,2**4)])
print(root)



运行结果:

None
1
  1
 / \
2   3
    __1__
   /     \
  2       3
 / \     / \
4   5   6   7
        ________1________
       /                 \
    __2___             ___3___
   /      \           /       \
  4       _5        _6        _7
 / \     /  \      /  \      /  \
8   9   10   11   12   13   14   15
                    ____________________1____________________
                   /                                         \
          ________2_________                         _________3_________
         /                  \                       /                   \
     ___4___             ____5___              ____6___              ____7___
    /       \           /        \            /        \            /        \
  _8        _9        _10        _11        _12        _13        _14        _15
 /  \      /  \      /   \      /   \      /   \      /   \      /   \      /   \
16   17   18   19   20    21   22    23   24    25   26    27   28    29   30    31
                                            ____________________________________________1____________________________________________
                                           /                                                                                         \
                      ____________________2_____________________                                                 _____________________3_____________________
                     /                                          \                                               /                                           \
           _________4_________                         __________5_________                          __________6_________                          __________7_________
          /                   \                       /                    \                        /                    \                        /                    \
     ____8___              ____9___              ____10___              ____11___              ____12___              ____13___              ____14___              ____15___
    /        \            /        \            /         \            /         \            /         \            /         \            /         \            /         \
  _16        _17        _18        _19        _20         _21        _22         _23        _24         _25        _26         _27        _28         _29        _30         _31
 /   \      /   \      /   \      /   \      /   \       /   \      /   \       /   \      /   \       /   \      /   \       /   \      /   \       /   \      /   \       /   \
32    33   34    35   36    37   38    39   40    41    42    43   44    45    46    47   48    49    50    51   52    53    54    55   56    57    58    59   60    61    62    63
    __15__
   /      \
  0        7
 / \      / \
2   6    4   3
        ______15_______
       /               \
    __0__            ___7___
   /     \          /       \
  2       6        4        _3
 / \     / \      / \      /  \
1   5   6   7    9   34   23   8
None
        ________1________
       /                 \
    __2___             ___3___
   /      \           /       \
  4       _5        _6        _7
 / \     /  \      /  \      /  \
8   9   10   11   12   13   14   15


嵌套创建节点,顺便判断对称性。得到一个结论:属性.is_symmetric判断的对称是指镜像对称,不是根节点的左右子树要完全相等,而是要镜面反向才返回 True。

>>> from binarytree import Node
>>> a=Node(1,Node(2,Node(3),Node(4)),Node(2,Node(3),Node(4)))
>>> a.pprint()
    __1__
   /     \
  2       2
 / \     / \
3   4   3   4
>>> b=Node(1,Node(2,Node(3),Node(4)),Node(2,Node(4),Node(3)))
>>> b.pprint()
    __1__
   /     \
  2       2
 / \     / \
3   4   4   3
>>> a.is_symmetric
False
>>> b.is_symmetric
True
>>> 





二叉树的方法与属性


1. 列印方法bt.pprint() 等同于print(bt)

# 以下所有举例皆用上面代码中的 root 满二叉树:
>>> root
Node(1)
>>> root.pprint()
        ________1________
       /                 \
    __2___             ___3___
   /      \           /       \
  4       _5        _6        _7
 / \     /  \      /  \      /  \
8   9   10   11   12   13   14   15
# 等同于 print(root)
>>> root.right.pprint()
     ___3___
    /       \
  _6        _7
 /  \      /  \
12   13   14   15
>>> root.left.right.pprint()
  _5
 /  \
10   11
>>> print(root.left.left)
  4
 / \
8   9
>>> 


2. 判断类属性,判断二叉树是否平衡、严格、对称、完全、完美,是否为最大(小)堆、搜索树等

对称是指根节点的左右子树呈镜像对称;严格是指除叶子外所有节点都有左右两个节点。

>>> root.is_balanced
True
>>> root.is_bst
False
>>> root.is_complete
True
>>> root.is_max_heap
False
>>> root.is_min_heap
True
>>> root.is_perfect
True
>>> root.is_strict
True
>>> root.is_symmetric
False
>>> 



3. 数量数值类属性

>>> root.left
Node(2)
>>> root.right
Node(3)
>>> root.val
1
>>> root.value
1
>>> root.values
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> root.values2
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> root.left.value
2
>>> root.right.left.value
6
>>> root.max_node_value
15
>>> root.min_node_value
1
>>> root.max_leaf_depth
3
>>> root.min_leaf_depth
3
>>> root.levels
[[Node(1)], [Node(2), Node(3)], [Node(4), Node(5), Node(6), Node(7)], [Node(8), Node(9), Node(10), Node(11), Node(12), Node(13), Node(14), Node(15)]]
>>> len(root.levels)   # == height + 1
4
>>> root.height
3
>>> root.leaves
[Node(8), Node(9), Node(10), Node(11), Node(12), Node(13), Node(14), Node(15)]
>>> len(root.leaves)
8
>>> root.leaf_count
8
>>> 

注: val和value等价,values和values2差别在于如有多个连续空节点时后者只返回一个None



4. 属性字典,打包了上面两大类属性中的一部分放在一个字典里

>>> root.properties
{'height': 3,
 'size': 15,
 'is_max_heap': False,
 'is_min_heap': True,
 'is_perfect': True,
 'is_strict': True,
 'is_complete': True,
 'leaf_count': 8,
 'min_node_value': 1,
 'max_node_value': 15,
 'min_leaf_depth': 3,
 'max_leaf_depth': 3,
 'is_balanced': True,
 'is_bst': False,
 'is_symmetric': False
}



5. 遍历类

>>> root.preorder
[Node(1), Node(2), Node(4), Node(8), Node(9), Node(5), Node(10), Node(11),
 Node(3), Node(6), Node(12), Node(13), Node(7), Node(14), Node(15)]
>>> root.inorder
[Node(8), Node(4), Node(9), Node(2), Node(10), Node(5), Node(11), Node(1),
 Node(12), Node(6), Node(13), Node(3), Node(14), Node(7), Node(15)]
>>> root.postorder
[Node(8), Node(9), Node(4), Node(10), Node(11), Node(5), Node(2), Node(12),
 Node(13), Node(6), Node(14), Node(15), Node(7), Node(3), Node(1)]
>>> root.levelorder
[Node(1), Node(2), Node(3), Node(4), Node(5), Node(6), Node(7), Node(8),
 Node(9), Node(10), Node(11), Node(12), Node(13), Node(14), Node(15)]
>>> 
>>> root.left.levelorder
[Node(2), Node(4), Node(5), Node(8), Node(9), Node(10), Node(11)]
>>> root.right.left.preorder
[Node(6), Node(12), Node(13)]
>>> 


6. .svg() 二叉树的矢量图

>>> root.svg()
'\n<svg width="384" height="240" xmlns="http://www.w3.org/2000/svg">\n<style>
\n    .value {\n        font: 300 16px sans-serif;\n        text-align: center;
\n        dominant-baseline: middle;\n        text-anchor: middle;\n    }
\n    .node {\n        fill: lightgray;\n        stroke-width: 1;\n    }
\n</style>\n<g stroke="#000000">\n ...... ...... 略去N行
>>>
>>> f = open('d:\\myBiTree.svg','w')
>>> f.write(root.svg())
2434
>>> f.close()
>>> 

可以输出后缀为.svg 的文本文件,一种矢量图的超文本表达文件,大部分浏览器可以直接查看;也可下载 Inkscape 等软件来编辑。输出效果如下:

20210725200246607.png


7.  .clone()  克隆一棵二叉树的全部或者部分

>>> from binarytree import tree
>>> a = tree()
>>> a.pprint()
        ____13______
       /            \
  ____2            __14
 /     \          /    \
12      0        6      11
  \      \      / \       \
   10     4    8   9       3
>>> b = a.clone()
>>> b.pprint()
        ____13______
       /            \
  ____2            __14
 /     \          /    \
12      0        6      11
  \      \      / \       \
   10     4    8   9       3
>>> c = b.right.clone()
>>> c.pprint()
    __14
   /    \
  6      11
 / \       \
8   9       3
>>> 


8.  .validate() 判断二叉树是否有效,正常返回None,有三种情况会抛出相应错误:

NodeTypeError: 如果节点不是Node(i)

NodeValueError: 如果节点值不是数字,如Node(i)中的参数i不为int或float

noderReferenceError: 如果二叉树中存在对节点的循环引用




随机二叉树函数 tree()


指定层数,随机创建一棵二叉树。


函数原型:tree(height: int = 3, is_perfect: bool = False)  

两个参数:层数height, 范围 0 ~ 9,最多创建 9 层,缺省值 3

    是否满二叉树is_perfect,缺省值False,即非满二叉树

创建几个随机二叉树吧:



>>> import binarytree as bt
>>> a=bt.tree()
>>> a.pprint()
      _8____
     /      \
    10     __3___
   /      /      \
  7      4       _6
 /        \     /  \
1          9   12   14
>>> b=bt.tree(4)
>>> b.pprint()
                   ____________8______
                  /                   \
           ______30________        ____4__
          /                \      /       \
     ____5___            ___17   10        1___
    /        \          /          \      /    \
  _22        _28      _7            19   0     _6
 /   \      /        /  \                     /
20    12   18       23   15                  13
>>> c=bt.tree(is_perfect=True)
>>> c.pprint()
          _______12______
         /               \
    ____2___            __14__
   /        \          /      \
  13        _0        5        6
 /  \      /  \      / \      / \
8    11   10   9    7   3    1   4
>>> a.height,b.height,c.height
(3, 4, 3)
>>> a.levels
[[Node(8)],
 [Node(10), Node(3)],
 [Node(7), Node(4), Node(6)],
 [Node(1), Node(9), Node(12), Node(14)]
]
>>> len(a.levels)
4
>>> # 注意: 层数levels = .height + 1


创建一个3层随机的满二叉树,再用正整数序列赋值到每个节点

>>> from binarytree import tree
>>> root = tree(is_perfect=True)
>>> root.pprint()
        ________5________
       /                 \
    __9___            ____12__
   /      \          /        \
  0       _13       11         4
 / \     /   \     /  \       / \
1   6   10    2   3    14    8   7
>>> tmpAssign = [exec(f'root[{i-1}].val={i}') for i in range(1,16)]
>>> root.pprint()
        ________1________
       /                 \
    __2___             ___3___
   /      \           /       \
  4       _5        _6        _7
 / \     /  \      /  \      /  \
8   9   10   11   12   13   14   15
>>> [i.value for i in root]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> root[0],root[0].value
(Node(1), 1)
>>> root[1],root[1].value
(Node(2), 2)
>>> root[2];root[2].value
Node(3)
3
>>> root[14];root[14].value
Node(15)
15
>>> 


或者其它层数的:

import binarytree as bt
Levels = 3
t = bt.tree(Levels-1, is_perfect=True)
for i in range(2**Levels-1):
    t[i].val = i+1
t.pprint()
L = 4
a = bt.tree(L-1, is_perfect=True)
lst = [*range(1,2**L)]
for i,n in enumerate(lst):
    a[i].val = n
a.pprint()
L = 5
b = bt.tree(L-1, is_perfect=True)
for i,n in enumerate([*range(1,len(b)+1)]):
    b[i].val = n
b.pprint()
'''
    __1__
   /     \
  2       3
 / \     / \
4   5   6   7
        ________1________
       /                 \
    __2___             ___3___
   /      \           /       \
  4       _5        _6        _7
 / \     /  \      /  \      /  \
8   9   10   11   12   13   14   15
                    ____________________1____________________
                   /                                         \
          ________2_________                         _________3_________
         /                  \                       /                   \
     ___4___             ____5___              ____6___              ____7___
    /       \           /        \            /        \            /        \
  _8        _9        _10        _11        _12        _13        _14        _15
 /  \      /  \      /   \      /   \      /   \      /   \      /   \      /   \
16   17   18   19   20    21   22    23   24    25   26    27   28    29   30    31
'''


给满二叉树“仿房间号”赋值:

import binarytree as bt
Level = 6
t = bt.tree(Level-1, is_perfect=True)
for i in range(Level):
  for j in range(2**i):
    n = 2
    #n = len(str(2**i))+1
    t[2**i+j-1].val=(i+1)*10**n+j+1
t.pprint()
'''
                                                               _____________________________________________________________101_____________________________________________________________
                                                              /                                                                                                                             \
                               _____________________________201_____________________________                                                                   _____________________________202_____________________________
                              /                                                             \                                                                 /                                                             \
               _____________301_____________                                   _____________302_____________                                   _____________303_____________                                   _____________304_____________
              /                             \                                 /                             \                                 /                             \                                 /                             \
       _____401_____                   _____402_____                   _____403_____                   _____404_____                   _____405_____                   _____406_____                   _____407_____                   _____408_____
      /             \                 /             \                 /             \                 /             \                 /             \                 /             \                 /             \                 /             \
   _501_           _502_           _503_           _504_           _505_           _506_           _507_           _508_           _509_           _510_           _511_           _512_           _513_           _514_           _515_           _516_
  /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \
601     602     603     604     605     606     607     608     609     610     611     612     613     614     615     616     617     618     619     620     621     622     623     624     625     626     627     628     629     630     631     632
'''


用指定列表赋值给满二叉树:

>>> from binarytree import tree
>>> data = [15,0,7,2,6,4,3,1,5,6,7,9,34,23,8]
>>> root = tree(is_perfect=True)
>>> root.pprint()
         _______10______
        /               \
    ___8___            __12___
   /       \          /       \
  14       _1        4        _3
 /  \     /  \      / \      /  \
5    2   13   9    0   6    11   7
>>> tmpAssign = [exec(f'root[{i}].val={n}') for i,n in enumerate(data)]
>>> root.pprint()
        ______15_______
       /               \
    __0__            ___7___
   /     \          /       \
  2       6        4        _3
 / \     / \      / \      /  \
1   5   6   7    9   34   23   8
>>> [i.value for i in root] == data
True
>>> 



给非满二叉树赋值:

>>> from binarytree import tree
>>> root = tree()
>>> root.pprint()
  _________13__
 /             \
14__            3__
    \          /   \
     11       9     0
    /  \           / \
   5    10        2   6
>>> [exec(f'root[{i}].val={n}') for i,n in enumerate([*range(1,16)])]
Traceback (most recent call last):
  File "<pyshell#237>", line 1, in <module>
    [exec(f'root[{i}].val={n}') for i,n in enumerate([*range(1,16)])]
  File "<pyshell#237>", line 1, in <listcomp>
    [exec(f'root[{i}].val={n}') for i,n in enumerate([*range(1,16)])]
  File "<string>", line 1, in <module>
  File "D:\Python38-32\lib\site-packages\binarytree\__init__.py", line 350, in __getitem__
    raise NodeNotFoundError("node missing at index {}".format(index))
binarytree.exceptions.NodeNotFoundError: node missing at index 3
>>> root[2]
Node(3)
>>> root[3]
Traceback (most recent call last):
  File "<pyshell#238>", line 1, in <module>
    root[3]
  File "D:\Python38-32\lib\site-packages\binarytree\__init__.py", line 350, in __getitem__
    raise NodeNotFoundError("node missing at index {}".format(index))
binarytree.exceptions.NodeNotFoundError: node missing at index 3
>>> root[4]
Node(11)
>>> 


使用上面用到过的办法来“依葫芦画瓢”,结果程序出错。

原因在于:非满二叉树相对于满二叉树“缺失”的节点索引号是跳空的。

正如上面的测试所示:root[2],root[4]之间的 root[3]并不存在。代码修改如下:

>>> from binarytree import tree
>>> root = tree()
>>> root.pprint()
       ______5__
      /         \
     13___       0__
    /     \     /   \
  _3      _6   7     12
 /       /          /  \
10      14         9    2
>>> 15 - len(root)
4   # 比满树少4个节点
>>> for i in range(15):
  try:
    root[i].val=i+1
  except:
    pass
>>> root.pprint()
      _____1__
     /        \
    2___       3___
   /    \     /    \
  4     _5   6     _7
 /     /          /  \
8     10         14   15
>>> # 跳空:9 11 12 13
>>> 

续上面的节点结构,重新赋值使得层序遍历出的数值连续:

>>> t = 0
>>> for i in range(15):
  try:
    t+=1
    root[i].val=t
  except:
    t-=1
>>> root.pprint()
      ____1__
     /       \
    2__       3___
   /   \     /    \
  4     5   6     _7
 /     /         /  \
8     9         10   11
>>> [i.value for i in root]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>>> root.levelorder
[Node(1), Node(2), Node(3), Node(4), Node(5), Node(6),
 Node(7), Node(8), Node(9), Node(10), Node(11)]
>>> 




用列表创建二叉树的函数 build()


函数原型:build(values: List[Union[float, int]])

一个参数:实数组成的列表


上面操练Node(),tree()函数时,都练习过用指定列表给二叉树赋值。那只是为了操练而操练的,因为用build()函数非常方便,一步到位:

>>> from binarytree import build
>>> root = build([*range(1,16)])
>>> root.pprint()
        ________1________
       /                 \
    __2___             ___3___
   /      \           /       \
  4       _5        _6        _7
 / \     /  \      /  \      /  \
8   9   10   11   12   13   14   15
>>> 


列表元素个数少于节点数时,后面的叶子自动为空:

>>> from binarytree import build
>>> root = build([*range(1,10)])
>>> root.pprint()
        __1__
       /     \
    __2       3
   /   \     / \
  4     5   6   7
 / \
8   9
>>> 


树中间的节点为空,只要把列表对应的元素置为None:

>>> from binarytree import build
>>> data = [15,0,7,2,6,4,None,1,5,8,9,None,10]
>>> root = build(data)
>>> root.pprint()
        ______15_____
       /             \
    __0__          ___7
   /     \        /
  2       6      4
 / \     / \      \
1   5   8   9      10
>>> 

注:给定列表的0号索引的元素一定不能为空,根节点为空列表之后元素将无处安放。另外已经置空的节点下的对应索引号也要置为None,如上面的root根节点下没 root.right.right 节点的, 所以如果要给data增加非None元素的话,程序也会出错。测试代码如下:

>>> from binarytree import build
>>> data = [15,0,7,2,6,4,None,1,5,8,9,None,10] + [3]
>>> build(data)
Traceback (most recent call last):
  File "<pyshell#7>", line 1, in <module>
    build(data)
  File "D:\Python\lib\site-packages\binarytree\__init__.py", line 2132, in build
    raise NodeNotFoundError(
binarytree.exceptions.NodeNotFoundError: parent node missing at index 6
>>>
>>> # 正确的元素添加,如下: 空索引的地方相应插入None
>>>
>>> data = [15,0,7,2,6,4,None,1,5,8,9,None,10]
>>> data += [None,None,3,11,12,13,14,16,17,18,None,None,19,20]
>>> root = build(data)
>>> root.pprint()
                   __________________15___________
                  /                               \
         ________0________                _________7
        /                 \              /
    ___2___             ___6___         4___
   /       \           /       \            \
  1        _5        _8        _9           _10
 / \      /  \      /  \      /  \         /   \
3   11   12   13   14   16   17   18      19    20
>>> 




build2()


用法基本与build()相同,但它的参数允许更紧凑的列表,因为它的同一层节点中如果最后连续为空只要一个“None”。两者的区别有点像上面在二叉树方法属性一节里提到的(已红色标注):values 和 values2的区别。请看如下测试代码:

>>> root1 = build([2, 5, None,3,None,None, None, 1, 4])
>>> root1.pprint()
        2
       /
    __5
   /
  3
 / \
1   4
>>> # build()能用的列表,build2()不一定通用:
>>> root1 = build2([2, 5, None,3,None,None, None, 1, 4])
Traceback (most recent call last):
  File "<pyshell#10>", line 1, in <module>
    root1 = build2([2, 5, None,3,None,None, None, 1, 4])
  File "D:\Python\lib\site-packages\binarytree\__init__.py", line 2194, in build2
    node = queue.popleft()
IndexError: pop from an empty deque
>>>
>>> # build2()正确的列表参数:
>>> root2 = build2([2, 5, None,3,None, 1, 4])
>>> root2.pprint()
        2
       /
    __5
   /
  3
 / \
1   4
>>> 



bst() heap()

用法基本上与 tree() 相同,参数也是:层数(0~9); is_perfect = False(默认值)

返回值:分别是特殊的二叉树 bst 和 heap;另heap()多一个参数 is_max = True(默认值)

>>> from binarytree import bst
>>> root = bst()
>>> root.height
3
>>> root.is_bst
True
>>> root.pprint()
        10______
       /        \
    __8      ____14
   /        /
  6        12
 / \         \
4   7         13
>>> 
>>> from binarytree import heap
>>> root = heap()
>>> root.height
3
>>> root.is_max_heap
True
>>> root.pprint()
        ________14____
       /              \
    __12__             11
   /      \           /  \
  8        10        3    9
 / \      /  \      /
0   4    6    1    2
>>> 
>>> root = heap(4, is_max=False)
>>> root.height
4
>>> root.is_min_heap
True
>>>
>>> root = heap(5, is_max=False, is_perfect=True)
>>> root.height
5
>>> root.is_min_heap
True
>>> root.is_perfect
True

tree() 也能造出bst 和 heap 来,只是用循环来多花点时间:

>>> from binarytree import bst, heap
>>> bst1 = tree()
>>> while not bst1.is_bst:
  bst1 = tree()
>>> bst1.pprint()
1____
     \
    __14
   /
  2
   \
    5
>>> heap1 = tree()
>>> while not heap1.is_max_heap:
  heap1 = tree()
>>> heap1.pprint()
        ________14_____
       /               \
    __12__             _13
   /      \           /   \
  6        10        11    3
 / \      /  \      /
2   0    1    4    9
>>> heap2 = tree()
>>> while not heap2.is_min_heap:
  heap2 = tree()
>>> heap2.pprint()
        ________0___
       /            \
    __3___          _1
   /      \        /  \
  7       _4      11   2
 / \     /  \
9   8   10   13
>>> 


获取双亲节点函数 get_parent()

get_parent(root: binarytree.Node, child: binarytree.Node)

给定子节点,返回它在根节点下的上一层级的节点

>>> from binarytree import tree, get_parent
>>> root = tree()
>>> print(root)
      ______8__
     /         \
    7           1
   / \         /
  6   10      5
 /      \
9        11
>>> print(get_parent(root,root.left.left))
    7
   / \
  6   10
 /      \
9        11
>>> get_parent(root,root.left.left) == get_parent(root,root.left.right)
True
>>> 

字数不够,代码来凑,字数统计有23456字了。

至此全部探索结束,如有新发现再作补充……   ^_^

动动你的小手,给个一键三连加五星好评! 谢谢!!

目录
相关文章
|
21天前
|
存储 缓存 JavaScript
python实战篇:利用request库打造自己的翻译接口
python实战篇:利用request库打造自己的翻译接口
31 1
python实战篇:利用request库打造自己的翻译接口
|
1月前
|
数据采集 JSON API
如何实现高效率超简洁的实时数据采集?——Python实战电商数据采集API接口
你是否曾为获取重要数据而感到困扰?是否因为数据封锁而无法获取所需信息?是否因为数据格式混乱而头疼?现在,所有这些问题都可以迎刃而解。让我为大家介绍一款强大的数据采集API接口。
|
1月前
|
数据采集 Python
爬虫实战-Python爬取百度当天热搜内容
爬虫实战-Python爬取百度当天热搜内容
72 0
|
1月前
|
安全 C++ Python
小游戏实战-Python实现石头剪刀布+扫雷小游戏
小游戏实战-Python实现石头剪刀布+扫雷小游戏
35 0
|
1月前
|
安全 Java 关系型数据库
深入探究Python的多线程与异步编程:实战与最佳实践
【2月更文挑战第1天】 深入探究Python的多线程与异步编程:实战与最佳实践
155 0
|
1月前
|
数据可视化 API Python
画图实战-Python实现某产品全年销量数据多种样式可视化
画图实战-Python实现某产品全年销量数据多种样式可视化
38 0
|
1月前
|
自然语言处理 小程序 数据挖掘
数据分析实战-Python实现博客评论数据的情感分析
数据分析实战-Python实现博客评论数据的情感分析
109 0
|
6天前
|
API 数据库 数据安全/隐私保护
Flask框架在Python面试中的应用与实战
【4月更文挑战第18天】Django REST framework (DRF) 是用于构建Web API的强力工具,尤其适合Django应用。本文深入讨论DRF面试常见问题,包括视图、序列化、路由、权限控制、分页过滤排序及错误处理。同时,强调了易错点如序列化器验证、权限认证配置、API版本管理、性能优化和响应格式统一,并提供实战代码示例。了解这些知识点有助于在Python面试中展现优秀的Web服务开发能力。
22 1
|
1天前
|
人工智能 安全 Java
Python 多线程编程实战:threading 模块的最佳实践
Python 多线程编程实战:threading 模块的最佳实践
12 5
|
4天前
|
人工智能 Python
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
9 0