【数据结构】先排序后查找的查找

简介: 【数据结构】先排序后查找的查找

这里写目录标题


序言

基本概念

工具:ASL

例如: 给定一个集合:1 3 7 4 9 0,顺序查找的方法,查找成功的ASL是多少? 解:对于每一个元素的查找成功的概率相同,都是1/6 既pi = 1/6,然后每个元素被查找成功的比较次数分别为(1,2,3,4,5,6) ASL = (1+2+3+4+5+6)/6 = 21/6

静态查找表

顺序查找

折半查找(二分查找 对分查找)

分块查找

动态查找表

典型的动态查找表——————二叉排序树

二叉排序树的创建,插入,查找,删除

创建与插入

查找与删除


序言


查找,顾名思义,就是从某一集体中找出一个或一种元素。又称检索。

其中,在计算机语言学习中,怎么利用机器对数据进行简便查找更是一项重要的工程。

根据对查找表操作不同,查找又分静态查找和动态查找。

根据查找表的特点,我们可以利用不同的方法进行找到我们所需的那个唯一关键字。


对于静态表的查找方法,这里我们主要介绍

一、顺序查找(线性查找)

二、折半查找(二分或对分查找)

三、静态树表的查找

四、分块查找(索引顺序查找)


对于动态表,我们主要介绍:

典型的动态表—— 二叉排序树


既然有方法了,那么怎么能判断方法的优劣呢?

这样就需要一个工具,来简单的判断该方法的优劣,它就是ASL(平均查找长度)

1186cf8222f9c19ec540424a5b83221f_24abc3cedf5bbc325bad34dc0c32fdd8.png


基本概念


查找表:——————由同一类型的数据元素(或记录)构成的集合

查 找:——————查询(Searching)特定元素是否在表中。

查找成功:——————若表中存在特定元素,称查找成功,应输出该记录或位置;

查找不成功:————(与查找成功对立)否则,称查找不成功(也应输出失败标志或失败位置)

静态查找表:————只查找,不改变集合内的数据元素。

动态查找表:——既查找,又改变(增减)集合内的数据元素。

关键字:——记录中某个数据项的值,可用来识别一个记录

主关键字:——可以唯一标识一个记录的关键字

次关键字:——识别若干记录的关键字


工具:ASL


如何评估查找方法的优劣?

明确:查找的过程就是将给定的K值与文件中各记录的关键字项进行比较的过程。所以用比较次数的平均值来评估算法的优劣。称为平均查找长度(ASL:average search length)。

19252bc0cee07ce944345d647e88dd12_d4ef535a350ae36390c84a6ca9c880e3.png

其中:

n是记录个数;

Pi是查找第i个记录的查找概率(通常取等概率,即Pi =1/n);

Ci是找到第i个记录时所经历的比较次数。


物理意义:假设每一元素被查找的概率相同,则查找每一元素所需的比较次数之总和再取平均,即为ASL。

显然,ASL值越小,时间效率越高。


例如:

给定一个集合:1 3 7 4 9 0,顺序查找的方法,查找成功的ASL是多少?

解:对于每一个元素的查找成功的概率相同,都是1/6 既pi = 1/6,然后每个元素被查找成功的比较次数分别为(1,2,3,4,5,6)

ASL = (1+2+3+4+5+6)/6 = 21/6


静态查找表


抽象数据类型的静态查找表的定义为:

ADT StaticSearchTable
{数据对象D:D是具有相同特性的数据元素的集合。每个数据元素均含有类型相同、可唯一标识数据元素的关键字。
 数据关系R:数据元素同属一个集合。
 基本操作P: 
    Create(ST,n);   操作结果:构造一个含n个数据元素的静态查找表ST。
    Destroy(ST);    操作结果:销毁表ST。
    Search(ST,key); 操作结果:若ST中存在其关键字等于key的数据元素,则函数值为该元素的值或者在表中的位置,否则为空。
    Traverse(ST,Visit()); 操作结果:按照某种次序对ST的每个元素调用函数VIsit()一次且仅一次,一旦visit()失败,则操作失败
}


(1)顺序表的机内存储结构:

typedef  ElemType{
    keyType  key;
    anyType  otherItems;
} ElemType
typedef struct {
          ElemType   *elem; //表基址,0号单元留空。表容量为全部元素
          int               length;     //表长,即表中数据元素个数
}SSTable;

存储图例:

0790e316d18b89372ea6b0be2901d1d5_0b2178d4385d717ba0f36c081017a652.png


顺序查找


利用上图

如果我们要找出其中的元素四,

首先,要找到其关键字(这里是注关键字)------数组序号也就是长度

然后,选取方法。

这里我们采用第一种方法,也就是顺序查找

Linear search,又称线性查找,即用逐一比较的办法顺序查找关键字,这显然是最直接的办法。


(2)算法的实现:

技巧:把待查关键字key存入表头或表尾(俗称“哨兵”),

若将待查找的key存入顺序表的首部(如0号单元),则顺序查找的实现方案为:从后向前逐个比较!

int Search_Seq( SSTable  ST , KeyType  key ){
   ST.elem[0].key =key;            //设立哨兵 
   for( i=ST.length; ST.elem[ i ].key!=key;  - - i  ); 
         //从后向前逐个比较
   return i; 
} // Search_Seq


设立哨兵:可免去查找过程中每一步都要检测是否查找完毕。当n>1000时,查找时间将减少一半。

不要用for(i=n; i>0; - -i) 或 for(i=1; i<=n; i++) 了

到达0号单元(哨兵)结束循环,查找失败,返回0(i=0)。查找成功,则返回该元素位置i。

图例:

d4aba4b28a34d575248ab15f924a3254_567779739965182febf6300cf5d1f8b4.png

等概率下的平均比较查找长度:

96af655555daa2468212e96fc87571cb_f153357cc3f086a62a1337234e28429b.png

9f88ecd60f5f87ed5e4b03581c388e14_3adadc92670bbb58640ee4c5bbd1978b.png


折半查找(二分查找 对分查找)


先给数据排序(例如按升序排好),形成有序表,然后再将key与正中元素相比,若比key小,则缩小至右半部内查找;再取其中值比较,每次缩小1/2的范围,直到查找成功或失败为止。

ae494997e3650341eccdf023880e2fc9_b925573f5caa5cd838e8921b297802d2.png

存储图例:

0790e316d18b89372ea6b0be2901d1d5_0b2178d4385d717ba0f36c081017a652.png

② 运算步骤:

1)low =1,high =11 ,mid =6 ,待查范围是 [1,11];

2)若 ST.elem[mid].key < key,说明 key[ mid+1,high] ,

则令:low =mid+1;重算 mid= (low+high)/2;.

3)若 ST.elem[mid].key > key,说明key[low ,mid-1],

则令:high =mid–1;重算 mid ;

4)若 ST.elem[ mid ].key = key,说明查找成功,元素序号=mid;


③ 结束条件: (1)查找成功 : ST.elem[mid].key = key

(2)查找不成功 : high≤low (意即区间长度小于0)

2a59c4e68c4d2a376a12fbc72229c46c_341ba5ef348b1b5b0b7409406fbb5e18.png

最后(low+high)/2下取整,得mid = 4 得出查找结果:查找成功,21所在位置是4

给出代码

int  bin_search(SSTable  ST,int  key)
{ int low,high,mid;
  low=1;  high=ST.length;
  while(low<=high)
  {
     mid=(low+high)/2;
     if  EQ(key,ST.elem[mid].key)   return mid;       //等于
     else if LT(key,ST.elem[mid].key)  high=mid-1;    //小于
          else  low=mid+1;
     }
     return 0;
}/*bin_search*/

算法效率:

fefcbfb26f96cc70e3823f4ada0b8b4f_66e9cb73f655bc2821fb74dd1e14fe94.png

4d3760448723dca3bbcb06efa0a1d80d_e48170e0a79c57c370b7c9a44e8d1eda.png


分块查找


又称索引顺序查找这是一种顺序查找的另一种改进方法。

先让数据分块有序,即分成若干子表,要求每个子表中的数值(用关键字更准确)都比后一块中数值小(但子表内部未必有序)。

然后将各子表中的最大关键字构成一个索引表,表中还要包含每个子表的起始地址(即头指针)。

88e5c9ed7b261d9ea3dc7e89e0d4d5eb_42bf269a2e1089ab48a00efd9556ed05.png

两步走: 首先通过索引表查找待查记录所在的块(子表),然后在块内进行顺序查找

索引表的存储结构定义如下,

#define MAX_SUBLIST_NUM 10
typedef struct{
    KeyType maxKey;           /*---子表中的最大关键字---*/
    int index;                /*---子表中第一个记录在基本表中的位置---*/
}IndexItem;                 /*---索引项---*/
typedef IndexItem indexList[MAX_SUBLIST_NUM]; /*----索引表类型--*/

那么,可以得出分块查找算法的平均查找长度

5f19017e4f1b47b0b6d044056e4a73dd_1e33078ea13ea24da3433df193eb1b17.png


动态查找表


21afce12adbfccada89a8a3f5348ec4c_006b03ef2babc3dca12e37c4193bf264.png


典型的动态查找表——————二叉排序树


二叉排序树的定义:

或是一棵空树;或者是具有如下性质的非空二叉树:

(1)左子树的所有结点值均小于根的值;

(2)右子树的所有结点值均大于根的值;

(3)它的左右子树也分别为二叉排序树。

从定义上可以看出,二叉排序树是一个可以由递归创建的逻辑结构。

二叉排序的图例:

5eb7566312ebd91b698dd25f1b282f82_da3ab21594467f1768e0509a1ddae250.png

二叉排序树的存储结构(以链表存储为例):

/*---二叉排序树的二叉链表存储结构---*/
typedef struct BTNode{                  /*---元素的结点结构---*/
    Elemtype key;                       /*---记录的关键字,忽略记录的其他数据项---*/
    struct BTNode *lchild,*rchild;      /*---左右指针---*/
}BTNode,*BStree;


二叉排序树的创建,插入,查找,删除


创建与插入


根据定义创建二叉树:

while(序列不为空){

  • 顺序拿出元素
  • 元素比根结点大,放到根结点的右子树。
  • 元素比根结点小,放到根结点的左子树。
  • 重复步骤2-3,至成为叶子结点。
    }


给出代码:

创建:

BStree CreateBST()
{
    BStree T,s;
    T = NULL;
    printf("输入关键字key,输入“-1”结束。\n");
    while(1)
    {
        scanf("%d",&key);               /*---这里假设key是int类型---*/
        if(key) break;
        s = (BTNode*)malloc(sizeof(BTNode));
        s->key = key;
        s->lchild = NULL;
        s->rchild = NULL;
        T  = InsertBST(T,s);             /*---插入二叉排序树---*/
    }
  return T;
}


插入(1:递归版本)

BSTree InsertBST(BSTree T,BTNode *s)
{/*---在以T为根的二叉排序树上插入一个指针s所指向的结点的递归算法---*/
    if(T==NULL) T = s;
    else
    {
        if(s->key > T->key) T->rchild = InsertBST(T->rchild,s);         /*---递归插入到T的右子树中---*/
        else if(s->key < T->key) T->lchild = InsertBST(T->lchild,s);    /*---递归插入到T的左子树中---*/
    }
    return T;
}


插入(2:非递归版本)

点击查看代码

BSTree InsertBST(BSTree T,BTNode *s)
{
    BSTree p = T;
    BTNode *f = NULL;
    if(T==NULL)
    {
        T = s;
        return T;
    }
    while(p)
    {
        if(p->key == s->key) return T;
        f = p;                      /*---记录访问的结点:便于连接s---*/
        if(s->key < p->key)
            p = p->lchild;
        else p = p->rchild;
    }//跳出循环:1.p = null;2.f就是s与之连接的结点
   if(s->key > p->key) f->rchild = s;
   if(s->key < p->key) f->lchild = s;
   return T;
}


397196d5e3afecaa7a67b2a4d32cf915_9cfc00f181f74563b2bd670742a3b197.gif


查找与删除


查找的基本过程如下:

当二叉树为空时,返回0;

当二叉树不为空时,首先将给定的值key与根结点关键字进行比较,若相等,则查找成功,返回1;否则将依据给定值key与根结点关键字值的大小关系,分别在其左子树或者右子树中继续查找。可见,二叉排序树的查找可以是一个递归的过程。


删除的基本过程:

91dae2c516e6dfce31e4e2d5e32867a7_0c50d46d2e0467b36b55c78af1723a45.png

8d7abc721bdf61dd5fbb4d2e80dacfb6_696693bc5148b3de3e214f0f7056e7cd.png

9945d0bc5ceee3da4ad1d2a80c1d428c_bd9d6ee677536ece49844bd3957c8149.png


给出代码:

查找代码:

int BSTsearch(BSTree T, int key)
{
    BSTree p = T;
    if(!p) return 0; /*---空树,返回0---*/
    else if(p->key == key) return 1;
    else if(p->key > key) BSTsearch(p->lchild,key);
    else BSTsearch(p->rchild,key);
}


查找非递归算法

点击查看代码

//二叉排序树查找非递归算法
int BSTsearch2(BSTNode *T, int data)
{
    BSTNode *p = T;
    while(p)
    {
        if(p->key == data)
            return 1;
        p = (p->key > data)? p->lchild : p->rchild;
    }
    return 0;
}


删除代码:

//二叉排序树删除操作
void DelBST(BSTNode *T,int key)
{
    BSTNode *p = T, *f, *q, *s;
    while(p)
    {
        if(p->key == key) break; //找到关键字为key的结点
        f=p;//记下关键字key节点的父节点
        p=(key < p->key)? p->lchild : p->rchild;//分别在*p的左、右子树中查找
    }
    if(!p) return;//二叉排序树中无关键字为key的结点
    if(p->lchild == NULL && p->rchild == NULL)//p无左子树无右子树
    {
        if(p == T) T = NULL;//删除的是根节点
        else
            if(p == f->lchild)
                f->lchild = NULL;
            else
                f->rchild = NULL;
    }
    else if(p->lchild == NULL && p->rchild != NULL)//p无左子树有右子树
    {
        if(f->lchild == p)
            f->lchild = p->rchild;
        else
            f->rchild = p->rchild;
    }
    else if(p->rchild == NULL && p->lchild != NULL)//p有左子树无右子树
    {
        if (f->lchild == p)
            f->lchild = p->lchild;
        else
            f->rchild = p->lchild;
    }
    else if(p->lchild != NULL && p->rchild != NULL)//p既有左子树又有右子树
    {
        q = p;
        s = p->lchild;//转左
        while(s->rchild)
        {//然后向右到尽头
            q = s;
            s = s->rchild;//s指向被删节点的“前驱”(中序前驱)
        }
        p->key = s->key;//以p的中序前趋结点s代替p(即把s的数据复制到p中)
        if(q != p)
            q->rchild = s->lchild;//重接q的右子树
        else
            q->lchild = s->lchild;//重接q的左子树。
    }
}



相关文章
|
1月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
23 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
1月前
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
23 1
|
1月前
|
搜索推荐 索引
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理(二)
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理
|
1月前
|
搜索推荐 C++
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理(一)
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理
|
1月前
|
算法
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
05_用一个栈实现另一个栈的排序
05_用一个栈实现另一个栈的排序
|
1月前
|
人工智能 搜索推荐 算法
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理(三)
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理
|
3月前
|
C语言
数据结构——排序【上】
数据结构——排序【上】
|
3月前
|
搜索推荐 算法 测试技术
【数据结构】排序
【数据结构】排序
|
4月前
|
搜索推荐
【数据结构常见七大排序(三)上】—交换排序篇【冒泡排序】And【快速排序】
【数据结构常见七大排序(三)上】—交换排序篇【冒泡排序】And【快速排序】
【数据结构常见七大排序(三)上】—交换排序篇【冒泡排序】And【快速排序】